A commonly used strategy to enhance the mass activity of Pt-based catalysts involves the synthesis of Au nanoparticles (NPs) with a monolayer-thick Pt-skin layer. The synergistic effect of Au and Pt results in a higher catalytic activity and better Pt utilization. However, the stability of the Pt-skin layer is questionable as our recent equilibrium Monte Carlo simulations predict that eventually the surface Pt is replaced by Au. The role of Au during destabilization of Pt-skin in vacuum and solution is investigated with the help of molecular dynamics. Different starting Au–Pt arrangements are studied mimicking various NP synthesis approaches. Beyond a critical number of atoms in a Pt cluster, the ideal Pt monolayer rapidly transforms to a three-dimensional (3D) Pt cluster. This is supported by our model predicting transition from the Pt monolayer to Volmer–Weber growth in the Au–Pt system. At room temperature, Pt atoms move into the subsurface layer at second timescales mainly via the exchange mechanism involving Au atoms or Au climbing on top of Pt. For all practical purposes, the experimental “Pt-skin” Au NPs may actually correspond to a single layer of surface Au over subsurface Pt layers. Presence of large 3D Pt clusters may slowdown the climbing of Au atoms on Pt, thereby delaying the formation of Au-skin.
Surfactants are common additives to hydraulic fracturing and enhanced oil recovery (EOR) fluids, and are under consideration for amendment to supercritical carbon dioxide for geological carbon sequestration (GCS). The effect of a common anionic surfactant, internal olefin sulfonate (IOS), on mineral dissolution from shale into brine was evaluated. When added to brine at concentrations exceeding the critical micelle concentration (94 mg/L), IOS inhibited carbonate mineral dissolution in an Eagle Ford shale, as well as dissolution of optical quality calcite (the dominant carbonate in the shale). Laser profilometry images provide spatial resolution across >3 orders of magnitude, and indicate that IOS addition to brine both enhances the formation of new etch pits in calcite, and impedes their further growth. Time-of-flight secondary ion mass spectrometry surface profiles show for the first time that IOS preferentially adsorbs at calcite pit edges versus flat calcite surfaces (i.e., terraces). Surface pressure calculations, sulfur K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy results, and density functional theory (DFT) calculations support this observation; the DFT results indicate that the sulfonate head group of the IOS molecule binds strongly to the calcite step site as compared to the terrace site. The S K-edge NEXAFS results indicate that IOS adsorbed more to etched calcite surfaces compared to smooth calcite surfaces. Overall, the results indicate that weak adsorption on flat calcite surfaces (i.e., terraces) disrupts water structure and enhances mass transfer of dissolution, while strong adsorption on calcite pit edges displaces adsorbed water and inhibits further etch pit growth. This work provides the first direct evidence of preferential adsorption of IOS to etched calcite surfaces and links it to macroscopic dissolution kinetics. This work has implications for surfactantcontaining fluids used in hydraulic fracturing, EOR and potentially GCS for subsurface injection into carbonate rich reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.