Purpose: The purpose of this study is to evaluate the performance characteristic of volumetric image-guided dedicated-nozzle pencil beam-scanning proton therapy (PT) system. Materials and Methods: PT system was characterized for electromechanical, image quality, and registration accuracy. Proton beam of 70.2–226.2 MeV was characterized for short- and long-term reproducibility in integrated depth dose; spot profile characteristics at different air gap and gantry angle; positioning accuracy of single and pattern of spot; dose linearity, reproducibility and consistency. All measurements were carried out using various X-ray and proton-beam specific detectors following standard protocols. Results: All electro-mechanical, imaging, and safety parameters performed well within the specified tolerance limit. The image registration errors along three translation and three rotational axes were ≤0.5 mm and ≤0.2° for both point-based and intensity-based auto-registration. Distal range (R 90 ) and distal dose fall-off (DDF) of 70.2–226.2 MeV proton beams were within 1 mm of calculated values based on the international commission on radiation units and measurements 49 and 0.0156× R 90 , respectively. The R 90 and DDF were reproducible within a standard deviation of 0.05 g/cm 2 during the first 8 months. Dose were linear from 18.5 (0.011 MU/spot) to 8405 (5 MU/spot) MU, reproducible within 0.5% in 5 consecutive days and consistent within 0.8% for full rotation. The cGy/MU for 70.2–226.2MeV was consistent within 0.5%. In-air X(Y) spot-sigma at isocenter varies from 2.96 (3.00) mm to 6.68 (6.52) mm for 70.2–226.2 MeV. Maximum variation of spot-sigma with air-gap of ±20 cm was ±0.36 mm (5.28%) and ±0.82 mm (±12.5%) along X- and Y-direction and 3.56% for full rotation. Relative spot positions were accurate within ±0.6 mm. The planned and delivered spot pattern of known complex geometry agreed with (γ%≤1) for 1% @ 1 mm >98% for representative five-proton energies at four gantry angle. Conclusion: The PT-system performed well within the expected accuracy level and consistent over a period of 8 months. The methodology and data presented here may help upcoming modern PT center during their crucial phase of commissioning.
Purpose: To analyze robustness of treatment plans optimized using different approaches in intensity modulated proton therapy (IMPT) and investigate the necessity of robust optimization and evaluation in intensity modulated radiotherapy (IMRT) plans for skull base chordomas. Materials and Methods: Two photon plans, standard IMRT and robustly optimized IMRT (RB-IMRT), and two IMPT plans, robustly optimized multi field optimization (MFO) and hybrid-MFO (HB-MFO), were created in RayStation TPS for five patients previously treated using single field uniform optimization (SFO). Both set-up and range uncertainties were incorporated during robust optimization of IMPT plans whereas only set-up uncertainty was used in RB-IMRT. The dosimetric outcomes from the five planning techniques were compared for every patient using standard dose volume indices and integral dose (ID) estimated for target and organs at risk (OARs). Robustness of each treatment plan was assessed by introducing set-up uncertainties of ±3 mm along the three translational axes and, only in protons, an additional range uncertainty of ±3.5%. Results: All the five nominal plans provided comparable and clinically acceptable target coverage. In comparison to nominal plans, worst case decrease in D 95% of clinical target volume-high risk (CTV-HR) were 11.1%, 13.5%, and 13.6% for SFO, MFO, and HB-MFO plans respectively. The corresponding values were 13.7% for standard IMRT which improved to 11.5% for RB-IMRT. The worst case increased in high dose (D 1% ) to CTV-HR was highest in IMRT (2.1%) and lowest in SFO (0.7%) plans. Moreover, IMRT showed worst case increases in D 1% for all neurological OARs and were lowest for SFO plans. The worst case D 1% for brainstem, chiasm, spinal cord, optic nerves, and temporal lobes were increased by 29%, 41%, 30%, 41% and 14% for IMRT and 18%, 21%, 21%, 24%, and 7% for SFO plans, respectively. In comparison to IMRT, RB-IMRT improved D 1% of all neurological OARs ranging from 5% to 14% in worst case scenarios. Conclusion: Based on the five cases presented in the current study, all proton planning techniques (SFO, MFO and HB-MFO) were robust both for target coverage and OARs sparing. Standard IMRT plans were less robust than proton plans in regards to high doses to neurological OARs. However, robust optimization applied to IMRT resulted in improved robustness in both target coverage and high doses to OARs. Robustness evaluation may be considered as a part of plan evaluation procedure even in IMRT.
Objective To study dosimetric impact of random spot positioning errors on the clinical pencil beam scanning proton therapy plans. Methods and materials IMPT plans of 10 patients who underwent proton therapy for tumors in brain or pelvic regions representing small and large volumes, respectively, were included in the study. Spot positioning errors of 1 mm, −1 mm or ±1 mm were introduced in these clinical plans by modifying the geometrical co-ordinates of proton spots using a script in the MATLAB programming environment. Positioning errors were simulated to certain numbers of (20%, 40%, 60%, 80%) randomly chosen spots in each layer of these treatment plans. Treatment plans with simulated errors were then imported back to the Raystation (Version 7) treatment planning system and the resultant dose distribution was calculated using Monte-Carlo dose calculation algorithm. Dosimetric plan evaluation parameters for target and critical organs of nominal treatment plans delivered for clinical treatments were compared with that of positioning error simulated treatment plans. For targets, D95% and D2% were used for the analysis. Dose received by optic nerve, chiasm, brainstem, rectum, sigmoid, and bowel were analyzed using relevant plan evaluation parameters depending on the critical structure. In case of intracranial lesions, the dose received by 0.03 cm3 volume (D0.03 cm3) was analyzed for optic nerve, chiasm and brainstem. In rectum, the volume of it receiving a dose of 65 Gy(RBE) (V65) and 40 Gy(RBE) (V40) were compared between the nominal and error introduced plans. Similarly, V65 and V63 were analyzed for Sigmoid and V50 and V15 were analyzed for bowel. Results The maximum dose variation in PTV D95% (1.88 %) was observed in a brain plan in which the target volume was the smallest (2.7 cm3) among all 10 plans included in the study. This variation in D95% drops down to 0.3% for a sacral chordoma plan in which the PTV volume is significantly higher at 672 cm3. The maximum difference in OARs in terms of absolute dose (D0.03 cm3) was found in left optic nerve (9.81%) and the minimum difference was observed in brainstem (2.48%). Overall, the magnitude of dose errors in chordoma plans were less significant in comparison to brain plans. Conclusion The dosimetric impact of different error scenarios in spot positioning becomes more prominent for treatment plans involving smaller target volume compared to plans involving larger target volumes. Advances in knowledge Provides information on the dosimetric impact of various possible spot positioning errors and its dependence on the tumor volume in intensity modulated proton therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.