x (x = 0⋅0-0⋅5) nanocomposites (NCs) with an average particle size of 72⋅4 nm were synthesized by the method of co-precipitation/hydrolysis (CPH). For the comparison of particle-size dependent effects, a set of polycrystalline samples with similar compositions was also prepared by solid state reaction (SSR) route. Average particle size for SSR prepared samples was about 3⋅0 μm. All the samples were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analyzer, Raman spectroscopy and Fourier transform infra-red (FTIR) spectroscopy. Their visible light photocatalytic activity was tested for the degradation of Congo Red dye. Maximum photodegradation was observed for the NC with x = 0⋅1 synthesized by CPH (particle size, 71 nm). Similar composition prepared by SSR method (particle size, 6⋅19 μm) showed lower photoactivity in comparison even with that observed for pure TiO 2 (particle size, 4⋅03 μm). It was, therefore, concluded that enhanced photodegradation is directly related to the reduced particle size of the composites, which implies that photosensitization is the process primarily involved. Although, doping of TiO 2 with ZnFe 2 O 4 does extend the cut-off wavelength towards visible parts of the spectrum, its contribution in the enhancement is not as significant as that due to the photosensitization.
Summary: Anthracene sulfonic acid doped polyaniline nanomaterials were prepared through the chemical oxidative polymerisation process. Ammonium peroxydisulfate (APS) was employed as oxidant. Scanning electron microscopy (SEM) results show the resultant polyaniline (PANi) materials exhibited nanofibrillar morphology with diameter sizes less than 300 nm. Using the nanofibrillar PANI, amperometric biosensors for H2O2 and erythromycin were constructed through the drop‐coating technique. Anthracene sulfonic acid (ASA) doped PANi and the test enzymes horseradish peroxidase, (HRP), or cytochrome P450 3A4, (CYP4503A4) were mixed in phosphate buffer solution before drop coating onto the electrode. The resultant biosensors displayed typical Michaelis‐Menten behaviour. The apparent Michaelis‐Menten constant obtained was 0.18 ± 0.01 mM and 0.80 ± 0.02 µM L−1 for the peroxide and erythromycin biosensor respectively. The sensitivity for the peroxide sensor was 3.3 × 10−3 A · cm−2 · mM−1, and the detection limit was found to be 1.2 × 10−2 mM respectively. Similarly, the sensitivity for the erythromycin sensor was in the same order at 1.57 × 10−3 A · cm−2 · mM−1 and detection limit was found to be 7.58 × 10−2 µM.
Organophosphate and carbamate pesticides are powerful neurotoxins that impede the activity of cholinesterase enzyme leading to severe health effects. This study reports the development, characterization, and application of acetylcholinesterase (AChE) biosensors based on a gold electrode modified with mercaptobenzothiazole (MBT) self-assembled monolayer and either poly(o-methoxyaniline) (POMA) or poly(2,5-dimethoxyaniline) (PDMA) in the presence of polystyrene sulfonic acid (PSSA). The pesticide biosensors were applied in the aqueous phase detection of diazinon and carbofuran pesticides using Osteryoung square wave voltammetry (SWV) and differential pulse voltammetry (DPV) at low frequencies. The results of the study showed that up to 94% inhibition of the MBT-polyaniline-based biosensors can be achieved in sample solutions containing 1.19 ppb of these neurotoxin pesticide compounds. Both Au/MBT/PDMA-PSSA/AChE and Au/MBT/POMA-PSSA/AChE biosensors exhibited low detection limits, which were calculated using the percentage inhibition methodology. The Au/MBT/POMA-PSSA/AChE biosensor exhibited lower detection limits of 0.07 ppb for diazinon and 0.06 ppb for carbofuran than did the Au/MBT/PDMA-PSSA/AChE sensor system that had detection limits values of 0.14 ppb for diazinon and 0.11 ppb for carbofuran. The average sensitivity of the pesticide biosensor systems is 4.2 mA/ppb. A combination of the high sensor 1683 sensitivity and low detection limits means that it will be possible to deploy the polyaniline-based sensor systems as alarm devices for carbamate and organophosphate pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.