The WHO recognizes human African trypanosomiasis, Chagas disease and the leishmaniases as neglected tropical diseases. These diseases are caused by parasitic trypanosomatids and range in severity from mild and self-curing to near invariably fatal. Public health advances have substantially decreased the effect of these diseases in recent decades but alone will not eliminate them. In this Review, we discuss why new drugs against trypanosomatids are required, approaches that are under investigation to develop new drugs and why the drug discovery pipeline remains essentially unfilled. In addition, we consider the important challenges to drug discovery strategies and the new technologies that can address them. The combination of new drugs, new technologies and public health initiatives is essential for the management, and hopefully eventual elimination, of trypanosomatid diseases from the human population.
Infectious tropical diseases have a huge effect in terms of mortality and morbidity, and impose a heavy economic burden on affected countries. These diseases predominantly affect the world's poorest people. Currently available drugs are inadequate for the majority of these diseases, and there is an urgent need for new treatments. This Review discusses some of the challenges involved in developing new drugs to treat these diseases and highlights recent progress. While there have been notable successes, there is still a long way to go.
bVisceral leishmaniasis is a neglected tropical disease with significant health impact. The current treatments are poor, and there is an urgent need to develop new drugs. Primary screening assays used for drug discovery campaigns have typically used free-living forms of the Leishmania parasite to allow for high-throughput screening. Such screens do not necessarily reflect the physiological situation, as the disease-causing stage of the parasite resides inside human host cells. Assessing the drug sensitivity of intracellular parasites on scale has recently become feasible with the advent of high-content screening methods. We describe here a 384-well microscopy-based intramacrophage Leishmania donovani assay and compare it to an axenic amastigote system. A panel of eight reference compounds was tested in both systems, as well as a human counterscreen cell line, and our findings show that for most clinically used compounds both axenic and intramacrophage assays report very similar results. A set of 15,659 diverse compounds was also screened using both systems. This resulted in the identification of seven new antileishmanial compounds and revealed a high false-positive rate for the axenic assay. We conclude that the intramacrophage assay is more suited as a primary hit-discovery platform than the current form of axenic assay, and we discuss how modifications to the axenic assay may render it more suitable for hit-discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.