Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
Misharin et al. elucidate the fate and function of monocyte-derived alveolar macrophages during the course of pulmonary fibrosis. These cells persisted throughout the life span, were enriched for the expression of profibrotic genes, and their genetic ablation ameliorated development of pulmonary fibrosis.
The type III secretion system of Pseudomonas aeruginosa transports four known effector proteins : ExoS, ExoT, ExoU and ExoY. However, the prevalence of the type III secretion system genes or the effector-encoding genes in clinical and environmental isolates of P. aeruginosa has not been well studied. Southern hybridization analyses and PCR were performed on over 100 P. aeruginosa isolates to determine the distribution of these genes. Clinical isolates were obtained from urine, endotracheal, blood and wound specimens, from the sputum of cystic fibrosis (CF) patients, and from non-hospital environmental sites. The popB gene was used as a marker for the presence of the large chromosomal locus encoding the type III secretion machinery proteins. Each isolate contained the popB gene, indicating that at least a portion of this large chromosomal locus was present in all isolates. Likewise, each isolate contained exoT-like sequences. In contrast, the exoS, exoU and exoY genes were variable traits. Overall, 72 % of examined isolates contained the exoS gene, 28 % contained the exoU gene, and 89 % contained the exoY gene. Interestingly, an inverse correlation was noted between the presence of the exoS and exoU genes in that all isolates except two contained either exoS or exoU but not both. No significant difference in exoS, exoU or exoY prevalence was observed between clinical and environmental isolates or between isolates cultured from different disease sites except for CF respiratory isolates. CF isolates harboured the exoU gene less frequently and the exoS gene more frequently than did isolates from some of the other sites of infection, including the respiratory tract of patients without CF. These results suggest that the P. aeruginosa type III secretion system is present in nearly all clinical and environmental isolates but that individual isolates and populations of isolates from distinct disease sites differ in their effector genotypes. The ubiquity of type III secretion genes in clinical isolates is consistent with an important role for this system in human disease. Keywords : ExoU, ExoY, ExoS, ExoT, cystic fibrosis INTRODUCTIONPseudomonas aeruginosa is a Gram-negative bacterium that causes a variety of diseases in compromised hosts. For example, this organism first colonizes the lungs of children with cystic fibrosis (CF) between 5 and 9 years of age (Pedersen et al., 1986) cultured from the sputum of approximately 80 % of adults over the age of 25 (Fitzsimmons, 1993). Once established within the lungs, P. aeruginosa usually causes episodic bouts of pneumonia that lead to progressive irreversible lung injury and ultimately death. Another group of individuals particularly prone to infections by this organism is hospitalized patients. In the United States, it is estimated that P. aeruginosa is responsible for 17 % of nosocomial pneumonias, 11 % of nosocomial urinary tract infections, 8 % of surgical H. FELTMAN and OTHERS wound infections and 3 % of central-line-associated bloodstream infections (National Nosocomi...
Among patients with unstable angina or myocardial infarction without ST-segment elevation, prasugrel did not significantly reduce the frequency of the primary end point, as compared with clopidogrel, and similar risks of bleeding were observed. (Funded by Eli Lilly and Daiichi Sankyo; TRILOGY ACS ClinicalTrials.gov number, NCT00699998.).
SUMMARY A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.