Hot QCD medium effects have been studied in the effective quasi-particle description of quark-gluon plasma. This model encodes the collective excitation of gluons and quarks/anti-quarks in the thermal medium in terms of effective quarks and gluons having non-trivial energy dispersion relation. The present investigation involves the extension of the effective quasi-particle model in strong magnetic field limit. Realizing, hot QCD medium in the strong magnetic field as an effective grand canonical system in terms of the modified quark, anti-quark and gluonic degrees of freedom, the thermodynamics has been studied. Further, the Debye mass in hot QCD medium has to be sensitive to the magnetic field, and subsequently the same has been observed for the effective hot QCD coupling. As an implication, electrical conductivity (longitudinal) has been studied within an effective kinetic theory description of hot QCD in the presence of the strong magnetic field. The hot QCD equation of state (EoS), dependence entering through the effective coupling and quasi-parton distribution function, found to have a significant impact on the longitudinal electrical conductivity in strong magnetic field background.
In this article, shear viscosity, bulk viscosity, and thermal conductivity of a hot QCD medium have been studied in the presence of strong magnetic field. To model the hot magnetized QCD matter, an extended quasi-particle description of the hot QCD equation of state in the presence of the magnetic field has been adopted. The effects of higher Landau levels on the temperature dependence of viscous coefficients (bulk and shear viscosities) and thermal conductivity have been obtained by considering the 1 → 2 processes in the presence of the strong magnetic field. An effective covariant kinetic theory has been set up in (1+1)-dimensional that includes mean field contributions in terms of quasi-particle dispersions and magnetic field to describe the Landau level dynamics of quarks. The sensitivity of these parameters to the magnitude of the magnetic field has also been explored. Both the magnetic field and mean field contributions have seen to play a significant role in obtaining the temperature behaviour of the transport coefficients of hot QCD medium.
The bulk viscosity of hot QCD medium has been obtained in the presence of strong magnetic field. The present investigation involves the estimation of the quark damping rate and subsequently the thermal relaxation time for quarks in the presence of magnetic field while realizing the hot QCD medium as an effective Grand-canonical ensemble of effective gluons and quarks-antiquarks. The dominant process in the strong field limit is 1 → 2 (g → qq) which contributes to the bulk viscosity in a most significant way. Further, setting up the linearized transport equation in the framework of an effective kinetic theory with hot QCD medium effects and employing the relaxation time approximation, the bulk viscosity has been estimated in lowest Landau level (LLL) and beyond. The temperature dependence of the ratio of the bulk viscosity to entropy density indicates towards its rising behavior near the transition temperature.
The heavy quark drag and momentum diffusion have been investigated in a hot magnetized quark-gluon plasma, along the directions parallel and perpendicular to the magnetic field. The analysis is done within the framework of Fokker-Planck dynamics by considering the heavy quark scattering with thermal quarks and gluons at the leading order in the coupling constant. An extended quasiparticle model is adopted to encode the thermal QCD medium interactions in the presence of a magnetic field. Further, the higher Landau level effects on the temperature behaviour of the parallel and perpendicular components of the drag force and diffusion coefficients have studied. It has been observed that both the equation of state and the magnetic field play key roles in the temperature dependence of the heavy quark dynamics. * manu.kurian@iitgn.ac.in †
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.