T cell immunoglobulin and mucin domain-containing-3 (Tim-3) is an inhibitory receptor expressed on exhausted T cells during HIV-1 and HCV infection. By contrast, Tim-3 expression and function are defective in multiple human autoimmune diseases. However, the molecular mechanisms governing Tim-3 function remain poorly understood. Here we show that HLA-B-associated transcript 3 (Bat3) binds to, and represses the function of Tim-3. Bat3-deficient T cells display elevated expression of exhaustion markers, and knocking down Bat3 in myelin antigen-specific CD4+ T cells dramatically inhibits the development of experimental autoimmune encephalomyelitis while promoting the expansion of a dysfunctional Tim-3hiIFNγlo CD4+ cell population. Furthermore, exhausted Tim-3+ T cells from murine tumors and HIV-1-infected individuals display substantially reduced Bat3 expression and targeted deletion of Bat3 induces an exhausted phenotype in T cells. These data indicate that Bat3 acts as a molecular safety catch that inhibits Tim-3-dependent cell death/exhaustion, suggesting that Bat3 may represent a viable therapeutic target in autoimmune disorders, chronic infections and cancers.
Experimental autoimmune myocarditis (EAM) appears after infectious heart disease, the most common cause of dilated cardiomyopathy in humans. Here we report that mice lacking T-bet, a T-box transcription factor required for T helper (Th)1 cell differentiation and interferon (IFN)-γ production, develop severe autoimmune heart disease compared to T-bet
−/− control mice. Experiments in T-bet
−/−
IL-4−/− and T-bet
−/− IL-4Rα−/− mice, as well as transfer of heart-specific Th1 and Th2 cell lines, showed that autoimmune heart disease develops independently of Th1 or Th2 polarization. Analysis of T-bet
−/−
IL-12Rβ1−/− and T-bet
−/− IL-12p35−/− mice then identified interleukin (IL)-23 as critical for EAM pathogenesis. In addition, T-bet
−/− mice showed a marked increase in production of the IL-23–dependent cytokine IL-17 by heart-infiltrating lymphocytes, and in vivo IL-17 depletion markedly reduced EAM severity in T-bet
−/− mice. Heart-infiltrating T-bet
−/− CD8+ but not CD8− T cells secrete IFN-γ, which inhibits IL-17 production and protects against severe EAM. In contrast, T-bet
−/− CD8+ lymphocytes completely lost their capacity to release IFN-γ within the heart. Collectively, these data show that severe IL-17–mediated EAM can develop in the absence of T-bet, and that T-bet can regulate autoimmunity via the control of nonspecific CD8+ T cell bystander functions in the inflamed target organ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.