Waterflood management in large mature fields is often time intensive due challenges in integrating and analyzing large volumes of data. Maintaining an updated dynamic model may not be practical for day to day decisions and as such data driven analysis becomes the preferred approach. The conventional workflows usually rely on geometry-based allocation factors of injected water and is not readily integrated with other data sources such as injection-production trend correlations, cased hole logs, pressure and production chemistry data. This paper presents a case study of advanced analytics application to a mature waterflood field where available data was rapidly integrated into an integrated visualization dashboard and machine learning was used to identify injector producer connectivity and allocation factors. This study was carried out for a mature waterflood field with over 15 years of water injection history and over 100 active producers. Python programming was used to clean up and integrate various data sources into an integrated visualization dashboard. Following attributes were identified as indications of producer injector connectivity: (a) Correlation in injection water salinity and produced water salinity (b) Correlation in injection rate trends and produced liquid rate trends, (c) Clear jump in producer ESP intake pressure trends as a sign of response from injection. Machine learning was used to cluster producers based on their produced water salinity trends which enabled shortlisting of injectors potentially connected to them. Another machine learning algorithm was then used to estimate connectivity factors between producers and injectors based on their distance and correlation in injection-production trends. The integrated dashboard was used to quality check results against other data sources e.g. trends in ESP intake pressure, PLT and RFT. Also, for each injector, water utilization factor was calculated based on correlation in cumulative water injection vs cumulative oil production in neighboring producers over last 2 years. The study was completed within a tight timeframe of 5 weeks. The results comprised of an injector-producer connectivity map and each injector’s water utilization factor, which formed the basis for re-evaluation of the existing injection water allocation strategy. The injection targets of individual injectors were revised within their operating constraints by prioritizing them based on their connectivity and water utilization factors, aiming at an estimated gain of 5% in reservoir oil rate. This paper demonstrates the potential of advanced analytics in unlocking valuable insights from various overlooked data sources. For example, in waterflood fields with multiple injection water sources, the contrast in their chemical compositions and aquifer water may partially serve as tracers providing useful information on reservoir connectivity. This paper also serves as a practical example of how digitalization can be adopted in subsurface community’s ways of working and hence be part of the ongoing journey of digital transformation in oil and gas industry.
Short Term Injection Re-distribution (STIR) is a python based real-time WaterFlood optimization technique for brownfield assets that uses advanced data analytics. The objective of this technique is to generate recommendations for injection water re-distribution to maximize oil production at the facility level. Even though this is a data driven technique, it is tightly bounded by Petroleum Engineering principles such as material balance etc. The workflow integrates and analyse short term data (last 3-6 months) at reservoir, wells and facility level. STIR workflow is divided into three modules: Injector-producer connectivity Injector efficiency Injection water optimization First module uses four major data types to estimate the connectivity between each injector-producer pair in the reservoir: Producers data (pressure, WC, GOR, salinity) Faults presence Subsurface distance Perforation similarity – layers and kh Second module uses connectivity and watercut data to establish the injector efficiency. Higher efficiency injectors contribute most to production while poor efficiency injectors contribute to water recycling. Third module has a mathematical optimizer to maximize the oil production by re-distributing the injection water amongst injectors while honoring the constraints at each node (well, facility etc.) of the production system. The STIR workflow has been applied to 6 reservoirs across different assets and an annual increase of 3-7% in oil production is predicted. Each recommendation is verified using an independent source of data and hence, the generated recommendations align very well with the reservoir understanding. The benefits of this technique can be seen in 3-6 months of implementation in terms of increased oil production and better support (pressure increase) to low watercut producers. The inherent flexibility in the workflow allows for easy replication in any Waterflooded Reservoir and works best when the injector well count in the reservoir is relatively high. Geological features are well represented in the workflow which is one of the unique functionalities of this technique. This method also generates producers bean-up and injector stimulation candidates opportunities. This low cost (no CAPEX) technique offers the advantages of conventional petroleum engineering techniques and Data driven approach. This technique provides a great alternative for WaterFlood management in brownfield where performing a reliable conventional analysis is challenging or at times impossible. STIR can be implemented in a reservoir from scratch in 3-6 weeks timeframe.
Capacitance resistance modeling (CRM) is a data-driven analytical technique for waterflood optimization developed in the early 2000s. The popular implementation uses only production/injection data as input and makes simplifying assumptions of pressure maintenance and injection being the primary driver of production. While these assumptions make CRM a quick plug & play type of technique that can easily be replicated between assets they also lead to major pitfalls, as these assumptions are often invalid. This study explores these pitfalls and discusses workarounds and mitigations to improve the reliability of CRM. CRM was used as a waterflood optimization technique for 3 onshore oil fields, each having 100s of active wells, multiple stacked reservoirs, and over 15 years of pattern waterflood development. The CRM algorithm was implemented in Python and consists of 4 modules: 1) Connectivity solver module – where connectivity between injectors and producers is quantified using a 2 year history match period, 2) Fractional Flow solver module – where oil rates are established as a function of injection rates, 3) Verification module – which is a blind test to assess history match quality, 4) Waterflood optimizer module – which redistributes water between injectors, subject to facility constraints and estimates potential oil gain. Additionally, CRM results were interpreted and validated using an integrated visualization dashboard. The two main issues encountered while using CRM in this study are 1) poor history match (HM) and 2) very high run time in the order of tens of hours due to the large number of wells. Poor HM was attributed to significant noise in the production data, aquifer support contributing to production, well interventions such as water shut-offs, re-perforation, etc. contributing to oil production. These issues were mitigated, and HM was improved using data cleaning techniques such as smoothening, outlier removal, and the usage of pseudo aquifer injectors for material balance. However, these techniques are not foolproof due to the nature of CRM which relies only on trends between producers and injectors for waterflood optimization. Runtime however was reduced to a couple of hours by breaking up the reservoir into sectors and using parallelization.
A key to successful Well, Reservoir and Facilities Management (WRFM) is to have an up-to-date opportunity funnel. In large mature fields, WRFM opportunity identification is heavily dependent on effective exploitation of measured & interpreted data. This paper presents a suite of data driven workflows, collectively called WRFM Opportunity Finder (WOF), that generates ranked list of opportunities across the WRFM opportunity spectrum. The WOF was developed for a mature waterflooded asset with over 500 active wells and over 30 years of production history. The first step included data collection and cleanup using python routines and its integration into an interactive visualization dashboard. The WOF used this data to generate ranked list of following opportunity types: (a) Bean-up/bean-down candidates (b) Watershut-off candidates (c) Add-perf candidates (d) PLT/ILT data gathering candidates, and (e) well stimulation candidates. The WOF algorithms, implemented using python, largely comprised of rule-based workflows with occasional use of machine learning in intermediate steps. In a large mature asset, field/reservoir/well reviews are typically conducted area by area or reservoir by reservoir and is therefore a slow process. It is challenging to have an updated holistic overview of opportunities across the field which can allow prioritization of optimal opportunities. Though the opportunity screening logic may be linked to clear physics-based rules, its maturation is often difficult as it requires processing and integration of large volumes of multi-disciplinary data through laborious manual review processes. The WOF addressed these issues by leveraging data processing algorithms that gathered data directly from databases and applied customized data processing routines. This led to reduction in data preparation and integration time by 90%. The WOF used workflows linked to petroleum engineering principles to arrive at ranked lists of opportunities with a potential to add 1-2% increment in oil production. The integrated visualization dashboard allowed quick and transparent validation of the identified opportunities and their ranking basis using a variety of independent checks. The results from WOF will inform a range of business delivery elements such as workover & data gathering plan, exception-based-surveillance and facilities debottlenecking plan. WOF exploits the best of both worlds - physics-based solutions and data driven techniques. It offers transparent logic which are scalable and replicable to a variety of settings and hence has an edge over pure machine learning approaches. The WOF accelerates identification of low capex/no-capex opportunities using existing data. It promotes maximization of returns on already made investments and hence lends resilience to business in the low oil price environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.