Germanium nanocrystals (ncGe) have not received as much attention as silicon nanocrystals (ncSi). However, Ge has demonstrated superiority over Si nanomaterials in some applications. Examples include, high charge-discharge rate lithium-ion batteries, small band-gap opto-electronic devices, and photo-therapeutics. When stabilized in an oxide matrix (ncGe/GeO ), its high charge-retention has enabled non-volatile memories. It has also found utility as a high-capacity anode material for Li-ion batteries with impressive stability. Herein, we report an organic-free synthesis of size-controlled ncGe in a GeO matrix as well as freestanding ncGe, via the thermal disproportionation of GeO prepared from thermally induced dehydration of Ge(OH) . The photothermal effect of ncGe, quantified by Raman spectroscopy, is found to be size dependent and superior to ncSi. This advance suggests applications of ncGe in photothermal therapy, desalination, and catalysis.
Germanium nanocrystals (ncGe) have not received as much attention as silicon nanocrystals (ncSi). However, Ge has demonstrated superiority over Si nanomaterials in some applications. Examples include, high charge–discharge rate lithium‐ion batteries, small band‐gap opto‐electronic devices, and photo‐therapeutics. When stabilized in an oxide matrix (ncGe/GeOx), its high charge‐retention has enabled non‐volatile memories. It has also found utility as a high‐capacity anode material for Li‐ion batteries with impressive stability. Herein, we report an organic‐free synthesis of size‐controlled ncGe in a GeOx matrix as well as freestanding ncGe, via the thermal disproportionation of GeO prepared from thermally induced dehydration of Ge(OH)2. The photothermal effect of ncGe, quantified by Raman spectroscopy, is found to be size dependent and superior to ncSi. This advance suggests applications of ncGe in photothermal therapy, desalination, and catalysis.
Laser cooling of matter through anti-Stokes photoluminescence, where the emitted frequency of light exceeds that of the impinging laser by virtue of absorption of thermal vibrational energy, has been successfully realized in condensed media, and in particular with rare earth doped systems achieving sub-100K solid state optical refrigeration. Studies suggest that laser cooling in semiconductors has the potential of achieving temperatures down to ~10K and that its direct integration can usher unique high-performance nanostructured semiconductor devices. While laser cooling of nanostructured II-VI semiconductors has been reported recently, laser cooling of indirect bandgap semiconductors such as group IV silicon and germanium remains a major challenge. Here we report on the anomalous observation of dominant anti-Stokes photoluminescence in germanium nanocrystals principally associated with plasmon coupling. Specifically, we attribute this Raman anomaly to the confluence of ultra-high purity nanocrystal germanium, generation of high density of electronhole plasma, the inherent degeneracy of longitudinal and transverse optical phonons in non-polar indirect bandgap semiconductors, and commensurate spatial confinement effects. At high laser intensities, plasmonassisted laser cooling with lattice temperature as low as ~50K is inferred.
Laser cooling of matter through anti-Stokes photoluminescence, where the emitted frequency of light exceeds that of the impinging laser by virtue of absorption of thermal vibrational energy, has been successfully realized in condensed media, and in particular with rare earth doped systems achieving sub-100K solid state optical refrigeration. Studies suggest that laser cooling in semiconductors has the potential of achieving temperatures down to ~10K and that its direct integration can usher unique high-performance nanostructured semiconductor devices. While laser cooling of nanostructured II-VI semiconductors has been reported recently, laser cooling of indirect bandgap semiconductors such as group IV silicon and germanium remains a major challenge. Here we report on the anomalous observation of dominant anti-Stokes photoluminescence in germanium nanocrystals principally associated with plasmon coupling. Specifically, we attribute this Raman anomaly to the confluence of ultra-high purity nanocrystal germanium, generation of high density of electron-hole plasma, the inherent degeneracy of longitudinal and transverse optical phonons in non-polar indirect bandgap semiconductors, and commensurate spatial confinement effects. At high laser intensities, plasmon-assisted laser cooling with lattice temperature as low as ~50K is inferred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.