Apple peel is a waste product from dried apple manufacture. The content of phenolic compounds, dietary fiber, and mineral are higher in apple peel, compared to other edible parts of this fruits. The objective of this study was to develop an ingredient from Granny Smith apple peel, using a pilot scale double drum-dryer, as drying technology. The control of all steps to maximize the retention of phenolic compounds and dietary fiber was considered. Operational conditions, such as drying temperature and time were determined, as well as important preprocessing steps like grinding and PPO inhibition. In addition, the physical-chemical characteristics, mineral and sugar content, and technological functional properties such as water retention capacity, solubility index, and dispersability among others, were analyzed. A simple, economical, and suitable pilot scale process, to produce a powder ingredient from apple peel by-product, was obtained. The drying process includes the application of ascorbic acid at 0.5% in the fresh apple peel slurry, drum-dryer operational conditions were 110 degrees C, 0.15 rpm and 0.2 mm drum clearance. The ingredient developed could be considered as a source of phenolic compounds (38.6 mg gallic acid equivalent/g dry base) and dietary fiber (39.7% dry base) in the formulation of foods. Practical Application: A method to develop an ingredient from Granny Smith apple peel using a pilot scale double drum-dryer as drying technology was developed. The method is simple, economical, feasible, and suitable and maximizes the retention of phenolic compounds and dietary fiber present in the raw matter. The ingredient could be used in the formulation of foods.
Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO3 2−) to the less toxic, insoluble metal, tellurium (Te°), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.
Many eubacteria are resistant to the toxic oxidizing agent potassium tellurite, and tellurite resistance involves diverse biochemical mechanisms. Expression of the iscS gene from Geobacillus stearothermophilus V, which is naturally resistant to tellurite, confers tellurite resistance in Escherichia coli K-12, which is naturally sensitive to tellurite. The G. stearothermophilus iscS gene encodes a cysteine desulfurase. A site-directed mutation in iscS that prevents binding of its pyridoxal phosphate cofactor abolishes both enzyme activity and its ability to confer tellurite resistance in E. coli. Expression of the G. stearothermophilus iscS gene confers tellurite resistance in tellurite-hypersensitive E. coli iscS and sodA sodB mutants (deficient in superoxide dismutase) and complements the auxotrophic requirement of an E. coli iscS mutant for thiamine but not for nicotinic acid. These and other results support the hypothesis that the reduction of tellurite generates superoxide anions and that the primary targets of superoxide damage in E. coli are enzymes with iron-sulfur clusters.The cytoplasm is a reducing environment, and many oxidizing agents can cause cellular damage by covalently modifying intracellular targets. Among these, the tellurite oxyanion (TeO 3 2Ϫ ) is toxic to most microbes. Tellurite can cross the gram-negative membrane using systems involved in phosphate uptake (28) and is a substrate for nitrate reductase, which can reduce the anion to tellurium, which is insoluble and nontoxic (3).To understand the basis of tellurite toxicity at the molecular level, we are exploring the mechanisms by which microbes are resistant to this anion. Several bacteria are naturally resistant to potassium tellurite, and both the genetic and biochemical bases of this resistance appear to be diverse. Tellurite resistance determinants are found both in bacterial chromosomes and in plasmids (22,27).The gram-positive bacterium Geobacillus stearothermophilus V, formerly Bacillus stearothermophilus V (16), is naturally resistant to high levels of tellurite (30, 31). Our work has focused on the identification and characterization of G. stearothermophilus genes that confer tellurite resistance when expressed in Escherichia coli. We have constructed gene libraries from G. stearothermophilus in high-copy-number plasmids, transformed sensitive E. coli hosts with these libraries, and selected for tellurite-resistant clones. Using this strategy, Vásquez et al. have found that the cysK gene of G. stearothermophilus confers a tellurite resistance phenotype in E. coli (30,31). CysK catalyzes the synthesis of cysteine from O-acetyl serine and sulfide as substrates, the terminal, rate-limiting step in cysteine biosynthesis. The cysK genes from other microorganisms have also been shown to confer tellurite resistance in E. coli (1,17).In this paper, we show that the expression of G. stearothermophilus cysteine desulfurase (IscS), a second enzyme involved in cysteine metabolism, also confers tellurite resistance in E. coli. Cysteine desul...
The nucleotide sequence of a 4,539 bp fragment of Bacillus stearothermophilus V mediating tellurite resistance in Escherichia coli was determined. Four ORFs of more than 150 amino acids encoding polypeptides of 244, 258, 308, and 421 residues were found in the restriction fragment. E. coli cells harboring a recombinant plasmid containing the Ter determinant express, when challenged with tellurite, a 32 kDa protein with an amino terminal sequence identical to the ten first residues of the 308 ORF. This ORF shows great similarity with the cysteine synthase gene (cysK) of a number of organisms. Recombinant clones carrying the active cysK gene have minimal inhibitory concentrations to K2TeO3 that were tenfold higher than those determined for the host strain or that of clones carrying ORFs 244, 258, and 421. Introduction of the B. stearothermophilus V cysK gene into a cysK strain of Salmonella typhimurium LT2 resulted in complementation of the mutation as well as transfer of tellurite resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.