In a combined theoretical and experimental study, an efficient catalytic reaction featuring epoxide opening and tetrahydrofuran formation through homolytic substitution reactions at C-O and Ti-O bonds was devised. The performance of these two key steps of the catalytic cycle was studied and could be adjusted by modifying the electronic properties of the catalysts through introduction of electron-donating or -withdrawing substituents to the titanocene catalysts. By regarding both steps as single electron versions of oxidative addition and reductive elimination, a mechanism-based platform for the design of catalysts and reagents for electron transfer reactions evolved that opens broad perspectives for further investigations.
Background Targeted radionuclide therapy with [177Lu]Lu-PSMA I&T (zadavotide guraxetan) has proven high efficacy and safety in treating patients with advanced prostate cancer worldwide. Several methods to determine the radiochemical purity have been reported but also limitations in the HPLC analysis due to retention of the sample and tailing effects when using standard gradients containing trifluoroacetic acid (TFA). We here report on the validation of a method for quality control of [177Lu]Lu-PSMA I&T including determination of radiochemical purity, identity testing and limit test for PSMA I&T by HPLC using a Phosphate buffer /Acetonitrile gradient system, complemented with a TLC system with 0.1N Citrate buffer pH 5 as mobile phase including validation of the methods, batch and stability data as well as identification of the main radiochemical impurity by mass spectrometry. Results The described HPLC method met the defined acceptance criteria in terms of accuracy, specificity, robustness, linearity, range and LOQ. HPLC analysis revealed symmetrical peaks and quantitative recovery from the column. Batch data showed a radiochemical purity > 95% as determined by HPLC, stability data a pronounced degradation due to radiolysis, which could be limited by addition of ascorbic acid, dilution and storage at low temperatures. The main radiochemical impurity was found to be the de-iodinated form of [177Lu]Lu-PSMA I&T. TLC analysis allowed to determine the amount of free Lu-177 even in the presence of DTPA in the final formulation. Conclusion Overall the described combination of HPLC and TLC provides a reliable tool for quality control of [177Lu]Lu-PSMA I&T.
Background: Targeted radionuclide therapy with [177Lu]Lu-PSMA I&T (Zadavotide guraxetan) has proven high efficacy and safety in treating patients with advanced prostate cancer worldwide. Several methods to determine the radiochemical purity have been reported but also limitations in the HPLC analysis due to retention of the sample and tailing effects when using standard gradients containing trifluoroacetic acid (TFA). We here report on the validation of a method for quality control of [177Lu]Lu-PSMA I&T including determination of radiochemical purity, identity testing and limit test for PSMA I&T by HPLC using a Phosphate buffer /Acetonitrile gradient system, complemented with a TLC system with 0.1N Citrate buffer pH5 as mobile phase including validation of the methods, batch and stability data as well as identification of the main radiochemical impurity by mass spectrometry. Results: The described HPLC method met the defined acceptance criteria in terms of accuracy, specificity, robustness, linearity, range and LOQ. HPLC analysis revealed symmetrical peaks and quantitative recovery from the column. Batch data showed a radiochemical purity >95% as determined by HPLC, stability data a pronounced degradation due to radiolysis, which could be limited by addition of ascorbic acid, dilution and storage at low temperatures. The main radiochemical impurity was found to be the de-iodinated form of [177Lu]Lu-PSMA I&T. TLC analysis allowed to determine the amount of free Lu-177 even in the presence of DTPA in the final formulation. Conclusion: Overall the described combination of HPLC and TLC provides a reliable tool for quality control of [177Lu]Lu-PSMA I&T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.