Hydrodynamic interaction is a sensitive process for gravity concentration equipment. Because of the nonlinearity and complexity of interaction dynamics due the solid particles and water, reliable mathematical models are needed to perform plant width design (PWD)-oriented tasks. To this end, in this paper we present a study of particle motion in a water oscillating flow subjected to a sinusoidal profile on a jig device, which is a high yield and high recovery gravimetric concentrator device widely used in minerals processing. A mathematical Eulerian-Lagrangian model (ELM) is used where fluid motion is calculated by solving the Navier-Stokes and continuity equations by a widely used numerical procedure call Semi-Implicit Method for Pressure Linked Equations algorithm (SIMPLE). The motion of individual particles is obtained by a forces balance applying the Newton’s second law of motion through the action of forces imposed by the water and gravity. Liquid-solid interactions forces are calculated by the mathematical Eulerian-Lagrangian model extended to a particle suspension having a wide size and density distribution. The calculation and comparison of Basset, pressure gradient and virtual mass forces with other forces (drag and buoyancy) acting on particle trajectories in water oscillating flows were carried out under turbulent regimen flow. It was found that Basset, pressure gradient and virtual mass forces have a significant effect on the particle’s trajectories affecting their subsequent stratification. Furthermore, the conditions under which these forces can be neglected in the jig’s hydrodynamic model were studied. The study demonstrates significant differences in the particle trajectories for various size and density distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.