The kinetic behaviours in microemulsions can be easily modelled using an extension of the pseudophase model previously developed for micellar catalysis. This model considers that the microheterogeneous media can be considered as the sum of different conventional reaction media, where the reagents are distributed and in which the reaction can occur simultaneously. The reaction rate observed in the microheterogeneous system will be the sum of the velocities in each one of the pseudophases. This use can be considered as an extension of the pseudophase model, which has been developed for the quantitative analysis of nitrosation reactions in AOT/isooctane/water microemulsions and has been applied successfully in the literature in a large variety of chemical reactions.
Two types of predictive models based on artificial neural networks (ANN) and quadratic regression model developed in our laboratory will be summarized in this book chapter. Both models were developed to predict the density, speed of sound, kinematic viscosity and surface tension of amphiphilic aqueous solutions. These models were developed taking into account the concentration, the number of carbons and the molecular weight values. The experimental data were compiled from literature and included different surfactants: i) hexyl, ii) octyl, iii) decyl, iv) tetradecyl and v) octadecyl trimethyl ammonium bromide. Neural models present better adjustment values, with R2 values above 0.902 and AAPD values under 2.93% (for all data), than the quadratic regression models. Finally, it is concluded that the quadratic regression and the neural models can be powerful prediction tools for the physical properties of surfactants aqueous solutions.
This book chapter presents three predictive models, based on artificial neural networks, to determine the percolation temperature of different AOT microemulsions in the presence of different additives (crown ethers, glymes, and polyethylene glycols), which were developed in our laboratory by different authors. An artificial neural network model has been developed for each additive. The models developed, multilayer perceptron, were implemented with different input variables (chosen among the variables that define the packing or its chemical properties) and different intermediate layers. The best model for crown ethers has a topology of 10-8-1, for glymes the selected topology is 5-5-1, and for polyethylene glycol, the best topology was 5-8-8-5-1. The selected models are capable of predicting the electrical percolation temperature with good adjustments in terms of the root mean square error (RMSE), presenting values below 1°C for glymes and polyethylene glycols. According to these results, it can be concluded that the models presented good predictive capacity for percolation temperature. Nevertheless, the adjustments obtained for the crown ethers model indicate that it would be convenient to study new input variables, increase the number of cases, and even use other training algorithms and methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.