Internet of Things platforms for Smart Cities are technologically complex and deploying them at large scale involves high costs and risks. Therefore, pilot schemes that allow validating proof of concepts, experimenting with different technologies and services, and fine-tuning them before migrating them to actual scenarios, are especially important in this context. The IoT platform deployed across the engineering schools of the Universidad Politécnica de Madrid in the Moncloa Campus of International Excellence represents a good example of a test bench for experimentation with Smart City services. This paper presents the main features of this platform, putting special emphasis on the technological challenges faced and on the solutions adopted, as well as on the functionality, services and potential that the platform offers.
In a more and more urbanized World, the so-called Smart Cities need to be driven by the principles of efficiency and sustainability. Information and Communications Technologies and, in particular, the Internet of Things will play a key role on this, since they will allow monitoring and optimizing all the municipal services that exist and shall exist. People flow monitoring stands out in this context due to its wide range of applications, spanning from monitoring transport infrastructure to physical security applications. There are different techniques to perform people flow monitoring, presenting pros and cons, as in any other engineering problem. Typically, the options that provide the most accurate results are also the most expensive ones, whereas there are cases where presence detection in given areas is enough and cost is a limiting factor. The main goal of this paper is to prove that a minimal deployment of sensors, combined with the adequate analysis and visualization algorithms, can render useful results. In order to achieve this goal, a dataset is used with 1-year data from a real infrastructure composed of 9 Wi-Fi tracking sensors deployed in the Telecommunications Engineering School of Universidad Politécnica de Madrid, which is visited by 4000 people daily and covers 1.8 hectares. The data analysis includes time and occupancy, position of people, and identification of common behaviors, as well as a comparison of the accuracy of the considered solution with actual data and a video monitoring system available at the library of the school. The obtained insights can be used for optimizing the management and operation of the school, as well as for other similar infrastructures and, in general, for other kind of applications which require not very accurate people flow monitoring at low cost.
New computational and technological paradigms that currently guide developments in the information society, i.e., Internet of things, pervasive technology, or Ubicomp, favor the appearance of new intrusion vectors that can directly affect people’s daily lives. This, together with advances in techniques and methods used for developing new cyber-attacks, exponentially increases the number of cyber threats which affect the information society. Because of this, the development and improvement of technology that assists cybersecurity experts to prevent and detect attacks arose as a fundamental pillar in the field of cybersecurity. Specifically, intrusion detection systems are now a fundamental tool in the provision of services through the internet. However, these systems have certain limitations, i.e., false positives, real-time analytics, etc., which require their operation to be supervised. Therefore, it is necessary to offer architectures and systems that favor an efficient analysis of the data handled by these tools. In this sense, this paper presents a new model of data preprocessing based on a novel distributed computing architecture focused on large-scale datasets such as UGR’16. In addition, the paper analyzes the use of machine learning techniques in order to improve the response and efficiency of the proposed preprocessing model. Thus, the solution developed achieves good results in terms of computer performance. Finally, the proposal shows the adequateness of decision tree algorithms for training a machine learning model by using a large dataset when compared with a multilayer perceptron neural network.
University campuses are normally constituted of large buildings responsible for high energy demand, and are also important as demonstration sites for new technologies and systems. This paper presents the results of achieving energy sustainability in a testbed composed of a set of four buildings that constitute the Telecommunications Engineering School of the Universidad Politécnica de Madrid. In the paper, after characterizing the consumption of university buildings for a complete year, different options to achieve more sustainable use of energy are presented, considering the integration of renewable generation sources, namely photovoltaic generation, and monitoring and controlling electricity demand. To ensure the implementation of the desired monitoring and control, an internet of things (IoT) platform based on wireless sensor network (WSN) infrastructure was designed and installed. Such a platform supports a smart system to control the heating, ventilation, and air conditioning (HVAC) and lighting systems in buildings. Furthermore, the paper presents the developed IoT-based platform, as well as the implemented services. As a result, the paper illustrates how providing old existing buildings with the appropriate technology can contribute to the objective of transforming such buildings into nearly zero-energy buildings (nZEB) at a low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.