In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large-scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo-insensitivity. Defined core and mini-core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next-generation sequencing, genome-wide selection helping in the appraisal of selection efficiency is leading towards next-generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research.
K E Y W O R D Sdeterminacy, genome sequence, hybrid technology, mini-core collection, photo-insensitivity,
The production and utilization of groundnut have increased tremendously across all provinces of Mozambique. However, the presence of aflatoxins has remained a critical food concern in the human diet. In this study, the effect of harvesting time and drying methods on aflatoxin contamination was examined in Northern Mozambique. A randomized complete block design in a split-split plot arrangement with four replications was used with groundnut varieties as the main plot and harvesting dates and drying methods as the subplots. Groundnut samples were analyzed for aflatoxin using the Mreader. In both locations, field observations indicated that on average, aflatoxin contamination levels were lower at physiological maturity (≤10 ppb) compared to harvesting 10 days before (≤15 ppb) and 10 days after physiological maturity (≥20 ppb). It was also observed that the two drying methods were effective in prevention of aflatoxin contamination on groundnut kernels to levels lower than 20 ppb. Aflatoxin contamination levels were significantly lower (≤12 ppb) as a result of the A-Frame than the tarpaulin method. The results of this study, therefore, have indicated that proper postharvest management of groundnuts, such as harvesting at physiological maturity and improved drying, gave lowest aflatoxin contamination levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.