Introduction and objectives Patients with type 2 diabetes (T2D) and stable coronary artery disease (CAD) previously revascularized with percutaneous coronary intervention (PCI) are at high risk of recurrent ischemic events. We aimed to provide real-world insights into the clinical characteristics and management of this clinical population, excluding patients with a history of myocardial infarction (MI) or stroke, using Natural Language Processing (NLP) technology. Methods This is a multicenter, retrospective study based on the secondary use of 2014–2018 real-world data captured in the Electronic Health Records (EHRs) of 1,579 patients (0.72% of the T2D population analyzed; n = 217,632 patients) from 12 representative hospitals in Spain. To access the unstructured clinical information in EHRs, we used the EHRead® technology, based on NLP and machine learning. Major adverse cardiovascular events (MACE) were considered: MI, ischemic stroke, urgent coronary revascularization, and hospitalization due to unstable angina. The association between MACE rates and the variables included in this study was evaluated following univariate and multivariate approaches. Results Most patients were male (72.13%), with a mean age of 70.5±10 years. Regarding T2D, most patients were non-insulin-dependent T2D (61.75%) with high prevalence of comorbidities. The median (Q1-Q3) duration of follow-up was 1.2 (0.3–4.5) years. Overall, 35.66% of patients suffered from at least one MACE during follow up. Using a Cox Proportional Hazards regression model analysis, several independent factors were associated with MACE during follow up: CAD duration (p < 0.001), COPD/Asthma (p = 0.021), heart valve disease (p = 0.031), multivessel disease (p = 0.005), insulin treatment (p < 0.001), statins treatment (p < 0.001), and clopidogrel treatment (p = 0.039). Conclusions Our results showed high rates of MACE in a large real-world series of PCI-revascularized patients with T2D and CAD with no history of MI or stroke. These data represent a potential opportunity to improve the clinical management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.