The field of Geographical Information Systems (GIS) has experienced a rapid and ongoing growth of available sources for geospatial data. This growth has demanded more data integration in order to explore the benefits of these data further. However, many data providers implies many points of view for the same phenomena: geospatial features. We need sophisticated procedures aiming to find the correspondences between two vector datasets, a process named geospatial data matching . Similarity measures are key-tools for matching methods, so it is interesting to review these concepts together. This article provides a survey of 30 years of research into the measures and methods facing geospatial data matching. Our survey presents related work and develops a common taxonomy that permits us to compare measures and methods. This study points out relevant issues that may help to discover the potential of these approaches in many applications, like data integration, conflation, quality evaluation, and data management.
A methodology for matching bidimensional entities is presented in this paper. The matching is proposed for both area and point features extracted from geographical databases. The procedure used to obtain homologous entities is achieved in a two-step process: The first matching, polygon to polygon matching (inter-element matching), is obtained by means of a genetic algorithm that allows the classifying of area features from two geographical databases. After this, we apply a point to point matching (intra-element matching) based on the comparison of changes in their turning functions. This study shows that genetic algorithms are suitable for matching polygon features even if these features are quite different. Our results show up to 40% of matched polygons with differences in geometrical attributes. With regards to point matching, the vertex from homologous polygons, the function and threshold values proposed in this paper show a useful method for obtaining precise vertex matching.
With recent advances in remote sensing, location-based services and other related technologies, the production of geospatial information has exponentially increased in the last decades. Furthermore, to facilitate discovery and efficient access to such information, spatial data infrastructures were promoted and standardized, with a consideration that metadata is essential to describing data and services. Standardization bodies such as the International Organization for Standardization have defined well-known metadata models such as ISO 19115. However, current metadata assets exhibit heterogeneous quality levels because they are created by different producers with different perspectives. To address quality-related concerns, several initiatives attempted to define a common framework and test the suitability of metadata through automatic controls. Nevertheless, these controls are focused on interoperability by testing the format of metadata and a set of controlled elements. In this paper, we propose a methodology of testing the quality of metadata by considering aspects other than interoperability. The proposal adapts ISO 19157 to the metadata case and has been applied to a corpus of the Spanish Spatial Data Infrastructure. The results demonstrate that our quality check helps determine different types of errors for all metadata elements and can be almost completely automated to enhance the significance of metadata.
This article presents datasets prepared with the aim of helping the evaluation of geospatial matching methods for vector data. These datasets were built up from mapping data produced by official Spanish mapping agencies. The testbed supplied encompasses the three geometry types: point, line and area. Initial datasets were submitted to geometric transformations in order to generate synthetic datasets. These transformations represent factors that might influence the performance of geospatial matching methods, like the morphology of linear or areal features, systematic transformations, and random disturbance over initial data. We call our 11 GiB benchmark data ‘MatchingLand’ and we hope it can be useful for the geographic information science research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.