The importance of agroforestry systems as carbon sinks has recently been recognized due to the need of climate change mitigation. The objective of this study was to compare the carbon content in living biomass, soil (0-10, 10-20, 20-30 cm in depth), dead organic matter between a set of non-agroforestry and agroforestry prototypes in Chiapas, Mexico where the carbon sequestration programme called Scolel'te has been carried out. The prototypes compared were: traditional maize (rotational prototype with pioneer native trees evaluated in the crop period), Taungya (maize with timber trees), improved fallow, traditional fallow (the last three rotational prototypes in the crop-free period), Inga-shade-organic coffee, polyculture-shade organic coffee, polyculturenon-organic coffee, pasture without trees, pasture with live fences, and pasture with scattered trees. Taungya and improved fallow were designed agroforestry prototypes, while the others were reproduced traditional systems. Seventy-nine plots were selected in three agro-climatic zones. Carbon in living biomass, dead biomass, and soil organic matter was measured in each plot. Results showed that carbon in living biomass and dead organic matter were different according to prototype; while soil organic carbon and total carbon were influenced mostly by the agro-climatic zone (P \ 0.01). Carbon density in the high tropical agro-climatic zone (1,000 m) was higher compared to the intermediate and low tropical agro-climatic zones (600 and 200 m, respectively, P \ 0.01). All the systems contained more carbon than traditional maize and pastures without trees. Silvopastoral systems, improved fallow, Taungya and coffee systems (especially polyculture-shade coffee and organic coffee) have the potential to sequester carbon via growing trees. Agroforestry systems could also contribute to carbon sequestration and reducing emissions when burning is avoided. The potential of organic coffee to maintain carbon in soil and to reduce emissions from deforestation and ecosystem degradation (REDD) is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.