This review article presents the biological and technological properties of biomaterials: titanium, polyetheretherketone, zirconium and Si3N4, focused on the application of dental implants. The methodology focused on examining different works related to the topics of biocompatibility, biofilm formation and adhesion properties, fibroblast proliferation, bone resorption, peri-implant infection, osseointegration, histology, cytotoxicity, toxicity, carcinogenicity, genotoxicity, hemocompatibility, vascularization, mechanical resistance and approval for use by the FDA. The results of the review show that all four biomaterials have favorable properties that can revolutionize implants, however, more studies are needed to confirm the results in the short and medium term.
MethodologyThe methodology was focused on carrying out a review of articles related to the topics of biocompatibility, biofilm formation and adhesion properties, fibroblast proliferation, bone resorption, peri-implant infection, osseointegration, histology, cytotoxicity, toxicity, carcinogenicity, genotoxicity, hemocompatibility, vascularity, mechanical resistance and approval for use by the FDA; related in dental implants and materials Ti, PEEK, Zr and Si3N4.