The problem of finding a nontrivial factor of a polynomial f (x) over a finite field Fq has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the art by focusing on prime degree polynomials; let n be the degree. If (n − 1) has a 'large' r-smooth divisor s, then we find a nontrivial factor of f (x) in deterministic poly(n r , log q) time, assuming GRH and that s = Ω( n/2 r ). Thus, for r = O(1) our algorithm is polynomial time. Further, for r = Ω(log log n) there are infinitely many prime degrees n for which our algorithm is applicable and better than the best known, assuming GRH. Our methods build on the algebraic-combinatorial framework of m-schemes initiated by Ivanyos, Karpinski and Saxena (ISSAC 2009). We show that the m-scheme on n points, implicitly appearing in our factoring algorithm, has an exceptional structure, leading us to the improved time complexity. Our structure theorem proves the existence of small intersection numbers in any association scheme that has many relations, and roughly equal valencies and indistinguishing numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.