Rhythmic neural activity is a hallmark of brain function, used ubiquitously to structure neural information. In mammalian olfaction, repetitive sniffing sets the principal rhythm but little is known about its role in sensory coding. Here, we show that mitral and tufted cells, the two main classes of olfactory bulb projection neurons, tightly lock to this rhythm, but to opposing phases of the sniff cycle. This phase shift is established by local inhibition that selectively delays mitral cell activity. Furthermore, while tufted cell phase is unperturbed in response to purely excitatory odorants, mitral cell phase is advanced in a graded, stimulus-dependent manner. Thus, phase separation by inhibition forms the basis for two distinct channels of olfactory processing.
The dense circuit structure of mammalian cerebral cortex is still unknown. With developments in three-dimensional electron microscopy, the imaging of sizable volumes of neuropil has become possible, but dense reconstruction of connectomes is the limiting step. We reconstructed a volume of ~500,000 cubic micrometers from layer 4 of mouse barrel cortex, ~300 times larger than previous dense reconstructions from the mammalian cerebral cortex. The connectomic data allowed the extraction of inhibitory and excitatory neuron subtypes that were not predictable from geometric information. We quantified connectomic imprints consistent with Hebbian synaptic weight adaptation, which yielded upper bounds for the fraction of the circuit consistent with saturated long-term potentiation. These data establish an approach for the locally dense connectomic phenotyping of neuronal circuitry in the mammalian cortex.
Progress in electron microscopy-based high-resolution connectomics is limited by data analysis throughput. Here, we present SegEM, a toolset for efficient semi-automated analysis of large-scale fully stained 3D-EM datasets for the reconstruction of neuronal circuits. By combining skeleton reconstructions of neurons with automated volume segmentations, SegEM allows the reconstruction of neuronal circuits at a work hour consumption rate of about 100-fold less than manual analysis and about 10-fold less than existing segmentation tools. SegEM provides a robust classifier selection procedure for finding the best automated image classifier for different types of nerve tissue. We applied these methods to a volume of 44 × 60 × 141 μm(3) SBEM data from mouse retina and a volume of 93 × 60 × 93 μm(3) from mouse cortex, and performed exemplary synaptic circuit reconstruction. SegEM resolves the tradeoff between synapse detection and semi-automated reconstruction performance in high-resolution connectomics and makes efficient circuit reconstruction in fully-stained EM datasets a ready-to-use technique for neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.