A reliability engineering program must be implemented from the conceptual phase of the physical asset to define the performance requirements of the components and equipment. Thus, in this work, the aim is to find the most optimal solution to manufacture polymer-based parts for the nuclear power industry using additive manufacturing routes. This case study application has been selected because polymers processed by additive manufacturing (AM) can be well suited for nuclear applications. The methodology includes—firstly—an analysis of the suitability of materials based on high-temperature resistance, thermal aging and irradiation tolerance, considering operation conditions. Secondly, an analysis of materials’ processability considering their associated AM routes is performed based on thermal analysis and evaluation of physical properties of materials. A final assessment integrating the in-service suitability and AM processability is performed using a reliability approach, solving different emerging objective conflicts through defined constraints and selection criteria. According to the integrated in-service performance evaluation: Polypropylene-ethylene polyallomer (PPP), Epoxy (EP), Phenolics (Ph), Polyurethane (PU) and Acrylonitrile butadiene rubber (NBR) are the best options for mild operation conditions and EP, Ph and PU, considering high temperature along with radiation exposure. Considering AM techniques: EP and Ph can be manufactured using VAT photopolymerization-stereolithography (VP-SLA) with a good expected processability being these materials valid for high temperature environments. Consequently, this research work analyzes the viability, processability and in-service behavior of parts.
A methodology has been developed to quantitatively assess the suitability of use and fitness for service of candidate materials using a novel approach that includes multiple perspectives. As a case study, a carbon steel pipe has been selected for operation in the petrochemical sector. The materials studied were the following: American Petroleum Institute (API) A25, A, B, X42, X46, X52, X56, X60, X65 and X70, as well as American Society for Testing and Materials (ASTM) A-106 Gr. A, B and C. The developed model combines an analytical multiperspective approach with calculation methods based on recognized prestige standards. In the present study, the following material degradation mechanisms have been considered: generalized corrosion, fracture due to mechanical overload and high-temperature degradation. Several novel analysis elements have been incorporated into this new methodology, such as the concept of a suitability matrix and a fitness for service index. The approach allows construction of a decision diagram, and the best alternatives ordered according to the criteria and restrictions that have arisen from the analysis are obtained. Additionally, from the analysis, a series of service limitations are proposed based on the maximum hours of operation of a component. The materials ASTM A-106 Gr. A, API-A, ASTM A-106 Gr. B and API-B maintain the best balance between properties and show greater reliability versus the probability of failure due to the degradation mechanisms considered in this study. In addition, some use limitations such as critical exposure temperature have been determined for these materials (450 • C for ASTM A-106 Gr. A designation and 440 • C for API-B and ASTM A-106 Gr. B designations) to avoid the harmful effects of high-temperature operation on the material mechanical properties.
The objective of this work is the development of a methodology to determine the useful life based on the storage temperature of NBR O-rings using a reliability-based approach that allows one to predict the use suitability at different supposed storage scenarios (that involve different storage time and temperature) considering the further required in-service performance. Thus, experimental measurements of Shore A hardness have been correlated with storage variables. From the study, it has been verified that for any of the analysis scenarios, the limit established criterion is above the storage time premise considered in the usual nuclear industry practices.
The aim of this work is to present a new analytical model to evaluate jointly the mechanical integrity and the fitness-for-service of nuclear reactor pressure-vessels steels. This new methodology integrates a robust and regulated irradiation embrittlement prediction model such as the ASTM E-900 with the ASME Fitness-for-Service code used widely in other demanding industries, such as oil and gas, to evaluate, among others, the risk of experiencing degradation mechanisms such as the brittle fracture (generated, in this case, due to the irradiation embrittlement). This multicriteria analytical model, which is based on a new formulation of the brittle fracture criterion, allows an adequate prediction of the irradiation effect on the fracture toughness of reactor pressure-vessel steels, letting us jointly evaluate the mechanical integrity and the fitness-for-service of the vessel by using standardized limit conditions. This allows making decisions during the design, manufacturing and in-service of reactor pressure vessels. The results obtained by the application of the methodology are coherent with several historical experimental works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.