SUMMARY The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was intially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis.
A gt11 cDNA library from Candida albicans ATCC 26555 was screened by using pooled sera from two patients with systemic candidiasis and five neutropenic patients with high levels of anti-C. albicans immunoglobulin M antibodies. Seven clones were isolated from 60,000 recombinant phages. The most reactive one contained a 0.9-kb cDNA encoding a polypeptide immunoreactive only with sera from patients with systemic candidiasis. The whole gene was isolated from a genomic library by using the cDNA as a probe. The nucleotide sequence of the coding region showed homology (78 to 79%) to the Saccharomyces cerevisiae TDH1 to TDH3 genes coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and their amino acid sequences showed 76% identity; thus, this gene has been named C. albicans TDH1. A rabbit polyclonal antiserum against the purified cytosolic C. albicans GAPDH (polyclonal antibody [PAb] anti-CA-GAPDH) was used to identify the GAPDH in the -mercaptoethanol extracts containing cell wall moieties. Indirect immunofluorescence demonstrated the presence of GAPDH at the C. albicans cell surface, particularly on the blastoconidia. Semiquantitative flow cytometry analysis showed the sensitivity of this GAPDH form to trypsin and its resistance to be removed with 2 M NaCl or 2% sodium dodecyl sulfate. The decrease in fluorescence in the presence of soluble GAPDH indicates the specificity of the labelling. In addition, a dose-dependent GAPDH enzymatic activity was detected in intact blastoconidia and germ tube cells. This activity was reduced by pretreatment of the cells with trypsin, formaldehyde, and PAb anti-CA-GAPDH. These observations indicate that an immunogenic, enzymatically active cell wall-associated form of the glycolytic enzyme GAPDH is found at the cell surface of C. albicans cells.
Walls of the two cellular forms (blastoconidia and mycelia) of Candida albicans ATCC 26555 were obtained from cells metabolically labeled (6-h pulse) with 'C-protein hydrolysate and [3H]threonine. Walls were purified by thorough washings with buffered and sodium dodecyl sulfate solutions and digested with Zymolyase 20T. The enzymatic treatment released four major high-molecular-weight mannoproteins (HMWM), with apparent molecular masses of 650, 500, 340, and 200 kilodaltons (HMWM-650, HMWM-500, HMWM-340, and HMWM-200, respectively), from yeast cells, whereas two high-molecular-mass mannoproteins (HMWM-260 and HMWM-180) were solubilized from mycelial cells. Some additional minor low-molecular-weight species were also detected in the enzymatic digests of walls from both types of cell. Single and dual pulse-chase experiments indicated that the HMWM-260 and HMWM-180 species reflect de novo synthesis of new proteins specific for the mycelia and do not represent a topological rearrangement of blastoconidium wall components. Monoclonal antibodies were raised against the HMWM-260 species (quantitatively the predominant component in the mycelial walls), and polyclonal rabbit antibodies were obtained against yeast or mycelial cell walls. Anti-mycelial cell wall polyclonal antibodies were adsorbed to whole killed blastoconidia to remove antibodies against common blastoconidium and mycelial wall antigens. Titration by enzyme-linked immunosorbent assay revealed that the monoclonal antibodies could recognize an epitope of the protein moiety of the HMWM-260 mannoprotein. Immunoblotting and immunofluorescence techniques using these monoclonal and polyclonal antibodies confirmed that the HMWM-260 and HMWM-180 species are specific components of the envelope of the mycelial cell walls.
Treatment of both yeast (blastoconidia) and hyphal (blastoconidia with germ tubes) cells of Candida albicans with 1-mercaptoethanol (1ME) releases a complex array of cell wall-bound proteins and glycoproteins. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting with fibrinogen-anti-fibrinogen antibody allowed the identification of a 58-kDa mannoprotein (mp58) in both extracts which specifically interacts with human fibrinogen. Treatment of intact cells with low concentrations of 1-glucanase (Zymolyase 20T) for short periods or with ,ME abolished or significantly reduced binding of fibrinogen. A rabbit polyclonal antiserum was raised against the purified mp58 species released by 1ME from germinated blastoconidia (PAb anti-mp58). By Western blotting, the antiserum cross-reacted with the homologous 58-kDa fibrinogen-binding mannoprotein present in I3ME extracts from blastoconidia, and by indirect immunofluorescence, the antiserum labelled both yeast cells and hyphae, yet reactivity was found primarily on the cell surface of filamentous forms. Immunostaining of human infected tissue sections with PAb anti-mp58 showed that the mp58 species is also expressed in vivo; in this case, the species is in the forms of both yeast and hyphal elements similarly labelled by the antiserum. Purified immunoglobulin G fraction from the antiserum did not alter the binding of fibrinogen as determined by a modified enzyme-linked immunosorbent assay and Western blotting. The N-and 0-glycosidically linked carbohydrates represent 18 to 20%o and 3 to 4%, respectively, of the molecular mass of the mp58. 0-linked sugar residues may be involved in the interaction of the molecule with fibrinogen.
Different methods of extraction frequently used in other studies were used to release glycoproteins from both intact cells and isolated cell walls of yeast and hyphal forms of Candida albicans. Extracts were obtained from whole cells by treatment (i) with 2-mercaptoethanol (PME) at pH 8.6 and 37 "C and (ii) with zymolyase after treatment with PME. Extracts were obtained from isolated and washed cell walls (i) by boiling with PME and sodium dodecyl sulphate (SDS), (ii) by boiling with SDS and (iii) by treatment with zymolyase after SDS. The extracts were separated by SDS-polyacrylamide gel electrophoresis and analysed by Western blotting with four reagents. Analysis with concanavalin A (ConA) revealed different glycoprotein populations depending on the treatment. Three possible germ-tube-specific constituents were observed; an 80 kDa component released by PME from both intact cells and cell walls, and 47 kDa and 43 kDa moieties released by zymolyase only from intact cells. MAb 4C12, specific for the protein portion of a large germ tube constituent, recognized polydisperse material which just entered the gel in PME extracts and in the region extending up from 200 kDa to near the top of the gel in zymolyase extracts. MAb 24.17, specific for a carbohydrate determinant of yeast phase cells, reacted with disperse material in the region from the top of the gel to one-third to two-thirds the distance to the 220 kDa mass marker. Antiserum specific for the serotype A determinant of mannan reacted with large disperse component(s) migrating in the region from the top of the gel to about two-thirds the distance to the 220 kDa mass marker and with a 180 kDa component. The components recognized by MAb 4C12, but not those recognised by MAb 24.17 and serotype A antiserum, were effected by treatment with endo-P-N-acetylglucosamidase H. The various analyses revealed that the method of extraction affected the composition and size of the constituents recognized by the reagents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.