Obesity has become a major worldwide health problem. In every single country in the world, the incidence of obesity is rising continuously and therefore, the associated morbidity, mortality and both medical and economical costs are expected to increase as well. The majority of these complications are related to co-morbid conditions that include coronary artery disease, hypertension, type 2 diabetes mellitus, respiratory disorders and dyslipidemia. Obesity increases cardiovascular risk through risk factors such as increased fasting plasma triglycerides, high LDL cholesterol, low HDL cholesterol, elevated blood glucose and insulin levels and high blood pressure. Novel lipid dependent, metabolic risk factors associated to obesity are the presence of the small dense LDL phenotype, postprandial hyperlipidemia with accumulation of atherogenic remnants and hepatic overproduction of apoB containing lipoproteins. All these lipid abnormalities are typical features of the metabolic syndrome and may be associated to a pro-inflammatory gradient which in part may originate in the adipose tissue itself and directly affect the endothelium. An important link between obesity, the metabolic syndrome and dyslipidemia, seems to be the development of insulin resistance in peripheral tissues leading to an enhanced hepatic flux of fatty acids from dietary sources, intravascular lipolysis and from adipose tissue resistant to the antilipolytic effects of insulin. The current review will focus on these aspects of lipid metabolism in obesity and potential interventions to treat the obesity related dyslipidemia.
Abstract. Barter PJ, Ballantyne CM, Carmena R,
Atherosclerosis is a low-grade inflammatory disease involving leukocytes, lipids, and glucose leading to endothelial dysfunction. Since activation of neutrophils by triglycerides and glucose has been described in vitro, we hypothesized that the postprandial phase is an inflammatory state affecting leukocytes, possibly contributing to endothelial dysfunction. We measured postprandial blood leukocyte counts, cytokines, hydroperoxides (HPOs), and flow-mediated vasodilation (FMD) in eight healthy males (age 23 ؎ 2 years) after a FAT (50 g/m 2 ) and GLUCOSE challenge (37.5 g/m 2 ), a combination of both (MIXED test), and after WATER. All tests, except WATER, resulted in significantly impaired FMD (10% reduction) between t ؍ 1 h and t ؍ 3 h, accompanied by a significant increase of neutrophils (59% after FAT and 28% after GLUCOSE and MIXED), total plasma HPOs (15 to 31% increase), and plasma interleukin-8 (IL-8) (50-130% increase). WATER did not affect FMD, neutrophils, HPOs, or IL-8. Lymphocytes increased gradually in all tests (40-70% increase at t ؍ 10 h compared with t ؍ 0; P Ͻ 0.005), paralleling a gradual 3-to 5-fold interleukin-6 increase. Monocyte and erythrocyte counts did not change in any test. In conclusion, the neutrophil increment during postprandial lipemia and glycemia with concomitant IL-8 and HPO increases may contribute to endothelial dysfunction. Lymphocyte increment is a nonspecific diurnal process. Postprandial intravascular inflammatory changes may be relevant for the pathogenesis of atherosclerosis. -van Oostrom, A.
Objective-Postprandial lipemia has been linked to atherosclerosis and inflammation. Because leukocyte activation is obligatory for atherogenesis, leukocyte activation by triglyceride-rich lipoproteins (TRLs) was investigated. Methods and Results-The expression of CD11b and CD66b after incubation with glucose and native and artificial TRLs (NTRL and ATRL) in vivo and in vitro was evaluated by flowcytometry. Oral fat loading tests showed an increased expression of CD11b on monocytes and neutrophils and CD66b on neutrophils. In 11 volunteers, postprandial leukocytes became enriched with meal-derived fatty acids ([1-13 C]16:0) suggesting uptake of exogenous fat. ApoB binding on leukocytes measured by flowcytometry in 65 subjects was highest on neutrophils and monocytes suggesting adherence of apoB-containing lipoproteins. Physiological concentrations of TRLs showed 62% increased neutrophil CD11b and a dose-dependent increased monocyte CD11b up to 84% in vitro. Incubations with lipid emulsions in the hypertriglyceridemic range showed a 5-fold increased monocyte CD11b expression, which was higher than the positive control (fMLP), and a dose-dependent 2-to 3-fold increased neutrophil CD11b and CD66b. The oxidative scavenger DMTU decreased the neutrophil CD66b expression by 36%. Conclusion-Acute hypertriglyceridemia is a leukocyte activator most likely by direct interaction between TRLs and leukocytes and uptake of fatty acids. TG-mediated leukocyte activation is an alternative proinflammatory and proatherogenic mechanism of hypertriglyceridemia in part associated to the generation of oxidative stress.
The findings emphasize the importance of individualized care in HIV-infected patients. Although rosiglitazone may partly correct lipoatrophy, metformin improves visceral fat accumulation, fasting lipid profile, and endothelial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.