Bacterial biofilms are defined as complex aggregates of bacteria that grow attached to surfaces or are associated with interfaces. Bacteria within biofilms are embedded in a self-produced extracellular matrix made of polysaccharides, nucleic acids, and proteins. It is recognized that bacterial biofilms are responsible for the majority of microbial infections that occur in the human body, and that biofilm-related infections are extremely difficult to treat. This is related with the fact that microbial cells in biofilms exhibit increased resistance levels to antibiotics in comparison with planktonic (free-floating) cells. In the last years, the introduction into the market of novel compounds that can overcome the resistance to antimicrobial agents associated with biofilm infection has slowed down. If this situation is not altered, millions of lives are at risk, and this will also strongly affect the world economy. As such, research into the identification and eradication of biofilms is important for the future of human health. In this sense, this article provides an overview of techniques developed to detect and imaging biofilms as well as recent strategies that can be applied to treat biofilms during the several biofilm formation steps.
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life‐cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti‐microbial resistant strains. Biofilms are complex structures encased in a self‐produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c‐di‐GMP) and small non‐coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain‐dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c‐di‐GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c‐di‐GMP and sRNAs) and the relationships between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.