El objetivo de este estudio es comparar dos arquitecturas de redes neuronales recurrentes de Elman y Jordan (RNRE y RNRJ), enfocadas en predicción de dos días de radiación solar y temperatura ambiente. Las entradas del modelo de predicción son variables meteorológicas como velocidad del viento, presión atmosférica, humedad relativa y precipitación. El Instituto de Investigación Geológico y Energético proveyó los datos de tres estaciones meteorológicas situadas en las Provincias de Pichincha y Tungurahua para las etapas de entrenamiento, validación y predicción de las redes. Cada red se entrenó con tres funciones de aprendizaje, retropropagación, retropropagación de momento y retropropagación resiliente. Los resultados muestran los parámetros estadísticos de correlación de Pearson, error cuadrático medio y el comportamiento de la predicción sobre gráficas de temperatura del aire y radiación solar, de acuerdo a los modelos de RNRE y RNRJ. Este trabajo presenta coeficientes de correlación superiores a 0,9 en la etapa de validación. En la etapa de predicción, el coeficiente de correlación es superior a 0,8 y el error cuadrático medio muestra valores inferiores a 0,02 kW de radiación solar y 2 ºC de temperatura ambiente.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.