Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases.
A previous study reported that a peptide, sensorin-A, is expressed exclusively in mechanosensory neurons having somata in central ganglia of Aplysia. The present study utilized in situ hybridization, staining by nerve back-fill and soma injection, and electrophysiological methods to characterize the locations, numbers, and functions of sensorin-A-expressing neurons and to define the relationships between soma locations and the locations of peripheral axons and receptive fields. Approximately 1,000 cells express sensorin-A mRNA in young adult animals (10-30 g) and 1,200 cells in larger adults (100-300 g). All of the labeled somata are in the CNS, primarily in the abdominal LE, rLE, RE and RF, pleural VC, cerebral J and K, and buccal S clusters. Expression also occurs in a few sparsely distributed cells in most ganglia. Together, receptive fields of all these mechanosensory clusters cover the entire body surface. Each VC cluster forms a somatotopic map of the ipsilateral body, a "sensory aplunculus." Cells in the pleural and cerebral clusters have partially overlapping sensory fields and synaptic targets. Buccal S cells have receptive fields on the buccal mass and lips and display notable differences in electrophysiological properties from other sensorin-A-expressing neurons. Neurons in all of the clusters have relatively high mechanosensory thresholds, responding preferentially to threatening or noxious stimuli. Synaptic outputs to target cells having defensive functions support a nociceptive role, as does peripheral sensitization following noxious stimulation, although additional functions are likely in some clusters. Interesting questions arise from observations that mRNA for sensorin-A is present not only in the somata but also in synaptic regions, connectives, and peripheral fibers.
Commissural interneurons (CINs) send their axons across the midline to innervate contralateral targets and have been implicated in the coordination of left-right limb movements during locomotion. In the neonatal mouse spinal cord, we studied the firing properties and responses to serotonin (5-HT) of two classes of CINs: those whose axons turn caudally after crossing the midline (dCINs) and those whose axons bifurcate after crossing the midline (adCINs). During NMDA and 5-HT-induced locomotor-like activity, a majority of lumbar (L2) dCINs fired rhythmically with ventral root-recorded motor activity, although their firing phase was widely distributed throughout the locomotor cycle. In contrast, none of the adCINs fired rhythmically during fictive locomotion. We studied the baseline firing and membrane properties, and responses to current injection, in dCINs and adCINs that had been partially isolated by blockade of rapid synaptic transmission (with antagonists to glutamate, GABA, and glycine). No significant baseline differences were found between the cell types. In contrast, 5-HT significantly increased the excitability of the isolated dCINs by depolarizing the membrane potential, reducing the postspike afterhyperpolarization amplitude and decreasing the action potential threshold. None of these parameters were affected by 5-HT in adCINs. These results, together with our recent study of a third class of CINs, the aCINs whose axons ascend after crossing the midline (Zhong et al., 2006), suggest that dCINs and aCINs, but not adCINs, are excited by 5-HT and are rhythmically active during fictive locomotion. Thus, they may play important roles in the coordination of left-right movements during fictive locomotion.
Fluorescent protein (XFP) expression in postnatal neurons allows the anatomical and physiological investigation of identified subpopulations of interneurons with established techniques. However, the spatiotemporal pattern of activity of these XFP neurons within a network and their role in the functional output of the network are more challenging issues to investigate. Here we apply two-photon excitation laser scanning microscopy to mouse spinal cord locomotor networks and present the methodology by which calcium activity can be recorded in XFP-expressing neurons. Such activity can be studied both in relation to neighboring non-XFP neurons in a spinal cord slice preparation and in relation to functional locomotor output monitored by ventral root activity in the intact in vitro spinal cord. Thus the network properties and functional correlates with locomotion of identified populations of interneurons can be studied simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.