DNA barcoding, based on sequence diversity in the mitochondrial COI gene, has proven an excellent tool for identifying species in many animal groups. Here, we report the first barcode studies for freshwater zooplankton from Mexico and Guatemala and discuss the taxonomic and biological implications of this work. Our studies examined 61 species of Cladocera and 21 of Copepoda, about 40% of the known fauna in this region. Sequence divergences among conspecific individuals of cladocerans and copepods averaged 0.82% and 0.79%, respectively, while sequence divergences among congeneric taxa were on average 15-20 times as high. Barcodes were successful in discriminating all species in our study, but sequences for Mexican Daphnia exilis overlapped with those of D. spinulata from Argentina. Our barcode data revealed evidence of many species overlooked by current classification systems —for example, based on COI genotypes the Diapahanosoma birgei group appears to include 5 species, while Ceriodaphnia cf. rigaudi, Moina cf. micrura, Mastigodiaptomus albuquerquensis and Mastigodiaptomus reidae all include 2–3 taxa. The barcode results support recent taxonomic revisions, such as recognition of the genus Leberis, and the presence of several species in the D. birgei and Chydorus sphaericus complexes. The present results indicate that DNA barcoding will provide powerful new insights into both the incidence of cryptic species and a better understanding of zooplankton distributions, aiding evaluation of the factors influencing competitive outcomes, and the colonization of aquatic environments.
Barcoding has proven a useful tool in the rapid identification of all life stages of fish species. Such information is of critical importance for fisheries management and conservation, especially in high-diversity regions, such as Mexico’s marine waters, where more than 2200 species occur. The present study reports the barcode analysis of 1392 specimens from the Yucatan Peninsula, corresponding to 610 adults and juveniles, 757 larvae and 25 eggs, representing 181 species (179 teleosts and 2 rays), 136 genera and 74 families. Barcoding results revealed major range extensions and overlooked taxa, including three sympatric species of Albula (one likely undescribed) and a new taxon of Floridichthys. In total, six species of eggs and 34 species of larvae were identified through their barcode match with adults. These cases enabled the first discrimination of the larvae of four species of Eucinostomus, and new information about spawning locality and time was obtained from egg records for the hogfish, Lachnolaimus maximus, which is one of the most commercially important species in the Mexican Caribbean. Also, barcodes revealed mistakes in species recognition during a sport-fish contest. In the future, barcodes will help avoid similar errors and protect rare or endangered species, and will aid regulation of fisheries quotas.
The freshwater fish fauna of Mexico and Guatemala is exceptionally diverse with >600 species, many endemic. In this study, patterns of sequence divergence were analysed in representatives of this fauna using cytochrome c oxidase subunit 1 (COI) DNA barcodes for 61 species in 36 genera. The average divergence among conspecific individuals was 0.45%, while congeneric taxa showed 5.1% divergence. Three species of Poblana, each occupying a different crater lake in the arid regions of Central Mexico, have had a controversial taxonomic history but are usually regarded as endemics to a single lake. They possess identical COI barcodes, suggesting a very recent history of isolation. Representatives of the Cichlidae, a complex and poorly understood family, were well discriminated by barcodes. Many species of Characidae seem to be young, with low divergence values (<2%), but nevertheless, clear barcode clusters were apparent in the Bramocharax-Astyanax complex. The symbranchid, Opisthernon aenigmaticum, has been regarded as a single species ranging from Guatemala to Mexico, but it includes two deeply divergent barcode lineages, one a possible new endemic species. Aside from these special cases, the results confirm that DNA barcodes will be highly effective in discriminating freshwater fishes from Central America and that a comprehensive analysis will provide new important insights for understanding diversity of this fauna.
Despite the contribution of DNA barcoding towards understanding the biodiversity and distribution of species, the success of COI amplification has been quite variable when it comes to freshwater zooplankton (Elías-Gutiérrez & Valdez-Moreno 2008; Jeffery et al. 2011). Some genera of microcrustaceans seem to be more difficult to amplify than others. For example, Macrothrix, Scapholeberis, Diaphanosoma and cyclopoids have yielded limited results. Among several possible reasons for the inability to barcode freshwater microcrustaceans is that there does not exist a specific set of primers for COI amplification. To this end, we developed a zooplankton - specific set of primers, which significantly increased average amplification success (20% increase). With these primers, we observed an overall success of over 70% for Sididae and Chydoridae, and more than 80% for Daphniidae, Moinidae, Bosminidae, Macrothricidae, Ilyocryptidae and Diaptomidae. We also demonstrate a simple alteration to a common specimen fixation method that increases the overall recovery of barcodes from freshwater zooplankton. Collectively, we believe our results will greatly aid the recovery of barcodes from these difficult groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.