The potential use of two restoration strategies to activate biogeochemical nutrient cycles in degraded soils in Colombia was studied. The active model was represented by forest plantations of neem (Azadirachta indica) (FPN), while the passive model by successional patches of native plant species was dominated by mosquero (Croton leptostachyus) (SPM). In the field plots fine-litter traps and litterbags were established; samples of standing litter and surface soil samples (0-10 cm) were collected for chemical analyses during a year. The results indicated that the annual contributions of fine litterfall in FPN and SPM were 557.5 and 902.2 kg ha −1 , respectively. The annual constant of decomposition of fine litter (k) was 1.58 for neem and 3.40 for mosquero. Consequently, the annual real returns of organic material and carbon into the soil from the leaf litterfall decomposition were 146 and 36 kg ha −1 yr −1 for FPN and 462 and 111 kg ha −1 yr −1 for SPM, respectively. Although both strategies showed potential to activate soil biogeochemical cycles with respect to control sites (without vegetation), the superiority of the passive strategy to supply fine litter and improve soil properties was reflected in higher values of soil organic matter content and cation exchange capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.