To enable the use of recyclates in thermoformed polypropylene products with acceptable optical appearance and good mechanical stability, a multilayer structure of virgin and recycled material can be used. When producing multilayer films with more than two layers, the used materials should have similar melt flow properties to prevent processing instabilities. In the case of a three-layer film, post-consumer recyclates are often hidden in the core layer. Due to the inconsistent melt flow properties of post-consumer recyclates, the adjustment of the melt flow properties of the core layer to those of the outer layers has to be realized by blending with virgin materials. In order to understand the effect of mixing with a virgin material with a certain pre-defined melt flow rate (MFR), material mixtures with different mixing partners from various sources were realized in this study. Hence, the pre-defined virgin material was mixed with (i) virgin materials, (ii) artificial recyclates out of a mixture of different virgin materials, and (iii) commercially available recyclates. These blends with mixing partner contents ranging from 0–100% in 10% increments were prepared by compounding and the MFR of each mixture was determined. For a mathematical description of the mixing behavior and furthermore for a proper MFR prediction of the material mix, existing mixing rules were tested on the three pre-defined sample groups. Therefore, this paper shows the applicability of different mixing rules for the prediction of the MFR of material blends. Furthermore, a new mixing rule was developed using symbolic regression based on genetic programming, which proved to be the most accurate predictive model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.