Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation.
To enhance our understanding of the autosomal recessive limb-girdle muscular dystrophy (LGMD), patients from six genetically distinct forms (LGMD2A to LGMD2F) were studied with antibodies directed against four sarcoglycan subunits (alpha-, beta-, gamma-, delta-SG), dystrophin, beta-dystroglycan (beta-DG) and merosin. All patients with LGMD2A and 2B had a mild clinical course while those with a primary sarcoglycan mutation (LGMD2C to 2F) had a range of clinical severity. Dystrophin and merosin immunofluorescence pattern was positive in patients with all six AR LGMDs. The majority of patients with a severe Duchenne-like phenotype presented total absence of the SG complex. However, some exceptions were found in 13q linked patients, indicating that the presence of a certain labelling for components of the SG may not be prognostic for a milder phenotype. The observation that the primary absence of alpha-SG results in the total absence of beta- and delta-SG but not of gamma-SG suggests that the alpha-, beta- and delta-subunits of sarcoglycan may be more closely associated. A secondary reduction in dystrophin amount was seen in patients with primary sarcoglycan mutations, which was most marked in patients with primary beta-, gamma- and delta-SG deficiencies. In contrast, beta-DG staining was retained in all patients, suggesting that the association between SG and DG subcomplexes is not so strong. Based on the above findings, we have refined the model for the interaction among the known glycoproteins of the sarcoglycan complex, within the DGC.
A simple unstructured model, which includes carbon source as the limiting and essential substrate and oxygen as an enhancing substrate for cell growth, has been implemented to depict cell population evolution of two Escherichia coli strains and the expression of their trimethylammonium metabolism in batch and continuous reactors. Although the model is applied to represent the trans-crotonobetaine to L-(-)-carnitine biotransformation, it is also useful for understanding the complete metabolic flow of trimethylammonium compounds in E. coli. Cell growth and biotransformation were studied in both anaerobic and aerobic conditions. For this reason we derived equations to modify the specific growth rate, mu, and the cell yield on the carbon source (glycerol), Y(xg), as oxygen increased the rate of growth. Inhibition functions representing an excess of the glycerol and oxygen were included to depict cell evolution during extreme conditions. As a result, the model fitted experimental data for various growth conditions, including different carbon source concentrations, initial oxygen levels, and the existence of a certain degree of cell death. Moreover, the production of enzymes involved within the E. coli trimethylammonium metabolism and related to trans-crotonobetaine biotransformation was also modeled as a function of both the cell and oxygen concentrations within the system. The model describes all the activities of the different enzymes within the transformed and wild strains, able to produce L-(-)-carnitine from trans-crotonobetaine under both anaerobic and aerobic conditions. Crotonobetaine reductase inhibition by either oxygen or the addition of fumarate as well as its non-reversible catalytic action was taken into consideration. The proposed model was useful for describing the whole set of variables under both growing and resting conditions. Both E. coli strains within membrane high-density reactors were well represented by the model as results matched the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.