The essential oxidoreductase Mia40/CHCHD4 mediates disulfide bond formation and protein folding in the mitochondrial intermembrane space. Here, we investigated the interactome of Mia40 thereby revealing links between thiol-oxidation and apoptosis, energy metabolism, and Ca(2+) signaling. Among the interaction partners of Mia40 is MICU1-the regulator of the mitochondrial Ca(2+) uniporter (MCU), which transfers Ca(2+) across the inner membrane. We examined the biogenesis of MICU1 and find that Mia40 introduces an intermolecular disulfide bond that links MICU1 and its inhibitory paralog MICU2 in a heterodimer. Absence of this disulfide bond results in increased receptor-induced mitochondrial Ca(2+) uptake. In the presence of the disulfide bond, MICU1-MICU2 heterodimer binding to MCU is controlled by Ca(2+) levels: the dimer associates with MCU at low levels of Ca(2+) and dissociates upon high Ca(2+) concentrations. Our findings support a model in which mitochondrial Ca(2+) uptake is regulated by a Ca(2+)-dependent remodeling of the uniporter complex.
Retinal gene therapy has shown great promise in treating retinitis pigmentosa (RP), a primary photoreceptor degeneration that leads to severe sight loss in young people 1 , 2 , 3 , 4 , 5 , 6 . Here we report the first in human Phase I/II dose escalation clinical trial for X-linked RP caused by mutations in the RP GTPase regulator (RPGR) gene 7 in 18 patients up to 6 months follow-up ( Clinicaltrials.gov : NCT03116113). The primary outcome of the study was safety and secondary outcomes included visual acuity, microperimetry and central retinal thickness. Apart from steroid-responsive subretinal inflammation in patients at the higher doses, there were no significant safety concerns following subretinal delivery of an adeno-associated viral vector encoding codon-optimized human RPGR (AAV8. coRPGR ) 8 meeting the pre-specified primary endpoint. Visual field improvements beginning at one month and maintained to the last point of follow-up were observed in six patients.
Purpose Spectral domain optical coherence tomography (SD-OCT) allows cross-sectional visualization of retinal structures in vivo. Here, we report the efficacy of a commercially available SD-OCT device to study mouse models of retinal degeneration. Methods C57BL/6 and BALB/c wild type mice and three different mouse models of hereditary retinal degeneration (Rho-/-, rd1, RPE65-/-) were investigated using confocal scanning laser ophthalmoscopy (cSLO) for en face visualization and SD-OCT for cross-sectional imaging of retinal structures. Histology was performed to correlate structural findings in SD-OCT with light microscopic data. Results In C57BL/6 and BALB/c mice, cSLO and SD-OCT imaging provided structural details of frequently used control animals (central retinal thickness, CRTC57BL/6 = 237±2μm and CRTBALB/c = 211±10μm). RPE65-/- mice at 11 months of age showed a significant reduction of retinal thickness (CRTRPE65 = 193±2μm) with thinning of the outer nuclear layer. Rho-/- mice at P28 demonstrated degenerative changes mainly in the outer retinal layers (CRTRho = 193±2μm). Examining rd1 animals before and after the onset of retinal degeneration allowed to monitor disease progression (CRTrd1 P11 = 246±4μm, CRTrd1 P28 = 143±4μm). Correlation of CRT assessed by histology and SD-OCT was high (r2 = 0.897). Conclusion We demonstrated cross sectional visualization of retinal structures in wild type mice and mouse models for retinal degeneration in vivo using a commercially available SD-OCT device. This method will help to reduce numbers of animals needed per study by allowing longitudinal study designs and facilitate characterization of disease dynamics and evaluation of putative therapeutic effects following experimental interventions.
BackgroundOptical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration.Methodology/Principal FindingsWe achieved to adapt a commercial 3rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified.Conclusions/SignificanceWe found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies.
Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.