is the main species responsible for aspergillosis in humans. The diagnosis of aspergillosis remains difficult, and the rapid emergence of azole resistance in is worrisome. The aim of this study was to validate the new MycoGENIE real-time PCR kit and to evaluate its performance on clinical samples for the detection of and its azole resistance. This multiplex assay detects DNA from the species complex by targeting the multicopy 28S rRNA gene and specific TR and L98H mutations in the single-copy-number gene of The specificity of mutation detection was assessed by testing DNA samples from 25 wild-type or mutated clinical isolates. Clinical validation was performed on 88 respiratory samples obtained from 62 patients and on 69 serum samples obtained from 16 patients with proven or probable aspergillosis and 13 patients without aspergillosis. The limit of detection was <1 copy for the 28S rRNA gene and 6 copies for the gene harboring the TR and L98H alterations. No cross-reactivity was detected with various fungi and bacteria. All isolates harboring the TR and L98H mutations were accurately detected by quantitative PCR (qPCR) analysis. With respiratory samples, qPCR results showed a sensitivity and specificity of 92.9% and 90.1%, respectively, while with serum samples, the sensitivity and specificity were 100% and 84.6%, respectively. Our study demonstrated that this new real-time PCR kit enables sensitive and rapid detection of DNA and azole resistance due to TR and L98H mutations in clinical samples.
The photoinitiated copolymerization of chlorotrifluoroethylene (CTFE) with several vinyl ethers [ethyl vinyl ether (EVE), 2‐chloroethyl vinyl ether (CEVE), cyclohexyl vinyl ether (CHVE), 4‐hydroxybutyl vinyl ether (HBVE)] was studied. CTFE is an acceptor monomer (e ∼ 1.5) whereas vinyl ethers are donor monomers (e ∼ −1.5), and therefore their copolymerization led to alternating copolymers, as indicated by elementary analysis. The equilibrium constant (KF) of the charge‐transfer complex formation (CTC) was determined by 19F NMR spectroscopy. Under our experimental conditions, KF was low for CHVE/CTFE and HBVE/CTFE systems, 0.058 and 0.013 l mol−1 respectively. It can be assumed that the copolymerization involves the free monomers rather than propagation via the donor–acceptor complex. The alternating structure arises from the great difference in polarity between the two types of monomers. Several functional copolymers were prepared in good yield and with molecular weight close to 15 000 g mol−1. © 2002 Society of Chemical Industry
The use of dendritic structures for the grafting of core-shell γ-Fe(2)O(3)/polymer 300 nm superparamagnetic nanoparticles (MNPs) has been performed with four metallodendrons that were functionalized with diphosphinopalladium complexes. The catalytic performance of these nanocatalysts was optimized for the Suzuki C-C cross-coupling reaction. These results demonstrated the importance of optimizing the catalytic efficiency of grafted MNPs by optimizing the dendritic structures and the nature of the peripheral phosphine ligands. All of these nanocatalysts showed remarkable reactivity towards bromoarenes and they were recovered and efficiently reused by magnetic separation with almost no loss of reactivity, even after 25 cycles.
Fluoropolymers with adhesive and anticorrosive properties were investigated by blending statistical phosphonated copolymers with poly(vinylidene fluoride) (PVDF). In a first part, methacrylic monomers bearing dialkyl phosphonate and phosphonic acid groups were synthesized. Dimethyl(2-methacryloyloxyethyl)phosphonate was obtained by carrying out a one-step methacrylation of a commercial phosphonated alcohol. Then, a chemical conversion of the dimethyl phosphonate group to phosphonic acid groups was accomplished by two routes, including on the one hand a trimethylhalosilane and on the other hand an inorganic halide as dealkylation reagents. The resulting monomers were analyzed by nuclear magnetic resonance (NMR) spectroscopy and results were discussed. In a second part, the phosphonated monomers were copolymerized with methyl methacrylate in the presence of 2,2'-azobis(isobutyronitrile) (AIBN) to give statistical copolymers in high yields. In a third and last part, copolymers were introduced into PVDF as adhesion promoters and anticorrosion inhibitors. Good dry and wet adhesion properties onto galvanized steel plates were obtained with blends containing mainly phosphonic acid groups. Results of corrosion tests show that the phosphonic acid groups maintain some level of adhesion, thereby preventing the spread of corrosion. However, the number of acid groups and their neighbors influence the adhesive and anticorrosive properties of the PVDF coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.