The German “Energiewende” is heavily based on electric power and, therefore, requests solutions to serve non‐electric energy uses and to store electric energy in large scale. Synthetic natural gas (SNG) produced with hydrogen from water electrolysis and with CO2 from mainly renewable sources is one approach. For the catalytic SNG production efficient removal and utilization of the reaction heat is the main issue. A metallic honeycomb‐like carrier‐based reactor proved in laboratory scale to match this challenge. This type of reactor shows good heat conductivity and enables optimized operation. In the EU‐funded project Store&Go the honeycomb methanation is scaled up to MW‐scale. For this, heat transfer and kinetic data were determined experimentally and used in CFD calculations for the reactor design. Finally a SNG plant with 1 MW feed‐in will be built and fully integrated operation will be shown.
This work deals with the coupling between high temperature steam electrolysis using solid oxide cells (SOEC) and carbon dioxide methanation to produce a synthetic natural gas (SNG) directly injectable in the natural gas distribution grid via a power-to-gas (P2G) pathway. An intrinsic kinetics obtained from the open literature has been used as the basis for a plug flow reactor model applied to a series of cooled multitube fixed bed reactors for methane synthesis. Evaporating water has been considered as coolant, ensuring a high heat transfer coefficient within the shell side of the reactor. A methanation section has been designed and optimized in order to moderate the maximum temperature within the catalytic bed and to minimize the catalyst load. Then, process modeling of a plant coupling high temperature electrolysis and methanation is presented: the main goal of this analysis is the calculation of overall plant efficiency (in terms of electricity-to-SNG chemical energy). Plant size has been set considering a 10 MW el SOEC-based electrolysis unit; heat produced from the exothermal methanation is entirely used for water evaporation before the steam electrolysis. A heat exchanger network (HEN) has been designed in order to reduce the number of components, resulting in an external heat requirement equal to 185 kW (≈1.9% of the electrolysis power). The SOEC-based power-to-gas system presented a higher heating value based efficiency equal to ≈86% (≈77% if evaluated on lower heating value basis).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.