Abstract. Attribute recognition, particularly facial, extracts many labels for each image. While some multi-task vision problems can be decomposed into separate tasks and stages, e.g., training independent models for each task, for a growing set of problems joint optimization across all tasks has been shown to improve performance. We show that for deep convolutional neural network (DCNN) facial attribute extraction, multi-task optimization is better. Unfortunately, it can be difficult to apply joint optimization to DCNNs when training data is imbalanced, and re-balancing multi-label data directly is structurally infeasible, since adding/removing data to balance one label will change the sampling of the other labels. This paper addresses the multi-label imbalance problem by introducing a novel mixed objective optimization network (MOON) with a loss function that mixes multiple task objectives with domain adaptive re-weighting of propagated loss. Experiments demonstrate that not only does MOON advance the state of the art in facial attribute recognition, but it also outperforms independently trained DCNNs using the same data. When using facial attributes for the LFW face recognition task, we show that our balanced (domain adapted) network outperforms the unbalanced trained network.
Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with non-syndromic cleft lip with or without cleft palate (NSCL/P), and other previous studies showed distinctly differing facial distance measurements when comparing unaffected relatives of NSCL/P patients with normal controls. Here, we test the hypothesis that genetic loci involved in NSCL/P also influence normal variation in facial morphology. We tested 11 SNPs from 10 genomic regions previously showing replicated evidence of association with NSCL/P for association with normal variation of nose width and bizygomatic distance in two cohorts from Germany (N=529) and the Netherlands (N=2497). The two most significant associations found were between nose width and SNP rs1258763 near the GREM1 gene in the German cohort (P=6 × 10(-4)), and between bizygomatic distance and SNP rs987525 at 8q24.21 near the CCDC26 gene (P=0.017) in the Dutch sample. A genetic prediction model explained 2% of phenotype variation in nose width in the German and 0.5% of bizygomatic distance variation in the Dutch cohort. Although preliminary, our data provide a first link between genetic loci involved in a pathological facial trait such as NSCL/P and variation of normal facial morphology. Moreover, we present a first approach for understanding the genetic basis of human facial appearance, a highly intriguing trait with implications on clinical practice, clinical genetics, forensic intelligence, social interactions and personal identity.
As science attempts to close the gap between man and machine by building systems capable of learning, we must embrace the importance of the unknown. The ability to differentiate between known and unknown can be considered a critical element of any intelligent self-learning system. The ability to reject uncertain inputs has a very long history in machine learning, as does including a background or garbage class to account for inputs that are not of interest. This paper explains why neither of these is genuinely sufficient for handling unknown inputs – uncertain is not unknown, and unknowns need not appear to be uncertain to a learning system. The past decade has seen the formalization and development of many open set algorithms, which provably bound the risk from unknown classes. We summarize the state of the art, core ideas, and results and explain why, despite the efforts to date, the current techniques are genuinely insufficient for handling unknown inputs, especially for deep networks.
Abstract-As our professional, social, and financial existences become increasingly digitized and as our government, healthcare, and military infrastructures rely more on computer technologies, they present larger and more lucrative targets for malware. Stealth malware in particular poses an increased threat because it is specifically designed to evade detection mechanisms, spreading dormant, in the wild for extended periods of time, gathering sensitive information or positioning itself for a high-impact zeroday attack. Policing the growing attack surface requires the development of efficient anti-malware solutions with improved generalization to detect novel types of malware and resolve these occurrences with as little burden on human experts as possible.In this paper, we survey malicious stealth technologies as well as existing solutions for detecting and categorizing these countermeasures autonomously. While machine learning offers promising potential for increasingly autonomous solutions with improved generalization to new malware types, both at the network level and at the host level, our findings suggest that several flawed assumptions inherent to most recognition algorithms prevent a direct mapping between the stealth malware recognition problem and a machine learning solution. The most notable of these flawed assumptions is the closed world assumption: that no sample belonging to a class outside of a static training set will appear at query time. We present a formalized adaptive open world framework for stealth malware recognition and relate it mathematically to research from other machine learning domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.