An out-of-plane digital holographic interferometry system is used to detect and measure insect's wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps.
A bone's fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone's volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone's surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface's variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone's microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.
Abstract. In-flight insect wing motion behavior depends on a wide variety of conditions. They have a complex structural system and what seems to be a rather complicated motion. Researchers in many fields have endeavoured to study and reproduce these wing movements with the aim to apply the gained knowledge in their fields and for the benefit of avionic technological improvements and insect migration studies, among many other themes. The study of in-flight insect wing motion and its measurement is a relevant issue to understand and reproduce its functionality. Being capable of measuring the wing flapping using optical noninvasive methods adds scientific and technological value to the fundamental research in the area. Four different types of butterflies found widely in Mexico's forests are used to compare their wing flapping mechanisms. An out-of-plane digital holographic interferometry system is used to detect and measure its wingmicro deformations. Displacement changes from in vivo flapping wings are registered with a CMOS high speed camera yielding full field of view images depicting these insects' wing motion. The results have a resolution in the scale of hundreds of nanometers over the entire wing surface. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.