The development of a methodology for the simulation of structure forming processes is highly desirable. The smoothed particle hydrodynamics (SPH) approach provides a respective framework for modeling the self-structuring of complex geometries. In this paper, we describe a diffusion-controlled phase separation process based on the Cahn-Hilliard approach using the SPH method. As a novelty for SPH method, we derive an approximation for a fourth-order derivative and validate it. Since boundary conditions strongly affect the solution of the phase separation model, we apply boundary conditions at free surfaces and solid walls. The results are in good agreement with the universal power law of coarsening and physical theory. It is possible to combine the presented model with existing SPH models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.