Synthetic Aperture Radar (SAR) data handling, processing, and interpretation are barriers preventing a rapid uptake of SAR data by application specialists and non-expert domain users in the field of agricultural monitoring. To improve the accessibility of Sentinel-1 data, we have generated a reduced-volume, multi-year Sentinel-1 SAR database. It includes mean and standard deviation of VV, VH and VH/VV backscatter, pixel counts, geometry, crop type, local incidence angle and azimuth angle at parcel-level. The database uses around 3100 Sentinel-1 images (5 TB) to produce a 12 GB time series database for approximately 770,000 crop parcels over the Netherlands for a period of three years. The database can be queried by Sentinel-1 system parameters (e.g. relative orbit) or user application-specific parameters (e.g. crop type, spatial extent, time period) for parcel level assessment. The database can be used to accelerate the development of new tools, applications and methodologies for agricultural and water related applications, such as parcel-level crop bio-geophysical parameter estimation, inter-annual variability analysis, drought monitoring, grassland monitoring and agricultural management decision-support.
Synthetic Aperture Radar (SAR) data handling, processing, and interpretation are barriers preventing a rapid uptake of SAR data by application specialists and non-expert domain users in the field of agricultural monitoring. To improve the accessibility of Sentinel-1 data, we have generated a reduced-volume, multi-year Sentinel-1 SAR database. It includes mean and standard deviation of VV, VH and VH/VV backscatter, pixel counts, geometry, crop type, local incidence angle and azimuth angle at parcel-level. The database uses around 3100 Sentinel-1 images (5 TB) to produce a 12 GB time series database for approximately 770,000 crop parcels over the Netherlands for a period of three years. The database can be queried by Sentinel-1 system parameters (e.g. relative orbit) or user application-specific parameters (e.g. crop type, spatial extent, time period) for parcel level assessment. The database can be used to accelerate the development of new tools, applications and methodologies for agricultural and water related applications, such as parcel-level crop bio-geophysical parameter estimation, inter-annual variability analysis, drought monitoring, grassland monitoring and agricultural management decision-support.
Our aim is to estimate Synthetic Aperture Radar (SAR) observables, such as backscatter in VV and VH polarizations, as well as the VH/VV ratio, cross-ratio (CR), and interferometric coherence in VV, from agricultural fields. In this study, we use the Decision Support System for Agrotechnology Transfer (DSSAT) crop growth simulation model to simulate parcel-level phenological and growth parameters for over 1500 parcels of silage maize in the Netherlands. The crop model was calibrated using field data, including silage maize phenological phases, leaf area index (LAI), and above-ground dry biomass (AGB). The simulations incorporate fine-resolution gridded precipitation data and soil parameters to model the interaction between soil-plantatmosphere and genotype in DSSAT. The crop variables produced by DSSAT are then used as inputs to a Support Vector Regression (SVR) model. This model is trained to simulate SAR observables in 2017, 2018, and 2019, and its performance is evaluated using independent fields in each of these years. The results show a close fit between modeled and observed SAR C-band observables. The importance of vegetation variables in the estimation of SAR observables is assessed. The AGB showed significant importance in the estimation of backscatter. This study demonstrates the potential value of combining crop growth simulation models and machine learning to simulate SAR observables. For example, the SVR model developed here could be used as an observation operator in an assimilation context to constrain vegetation and soil water dynamics in a crop growth model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.