Miconia chamissois Naudin is a species from the Cerrado, which is being increasingly researched for its therapeutic potential. The aim of this study was to obtain a standardized extract and to evaluate seasonal chemical variations. Seven batches of aqueous extracts from leaves were produced for the standardization. These extracts were evaluated for total solids, polyphenol (TPC) and flavonoid content (TFC), vitexin derivative content, antioxidant activity; thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) profiles were generated. For the seasonal study, leaves were collected from five different periods (May 2017 to August 2018). The results were correlated with meteorological data (global radiation, temperature, and rainfall index). Using chromatographic and spectroscopic techniques, apigenin C-glycosides (vitexin/isovitexin) and derivatives, luteolin C-glycosides (orientin/isoorientin) and derivatives, a quercetin glycoside, miconioside B, matteucinol-7-O-β-apiofuranosyl (1 → 6) -β-glucopyranoside, and farrerol were identified. Quality parameters, including chemical marker quantification by HPLC, and biological activity, are described. In the extract standardization process, all the evaluated parameters showed low variability. The seasonality study revealed no significant correlations (p < 0.05) between TPC or TFC content and meteorological data. These results showed that it is possible to obtain extracts from M. chamissois at any time of the year without significant differences in composition.
Chatergellus communis is a wasp species endemic to the neotropical region and its venom constituents have never been described. In this study, two peptides from C. communis venom, denominated Communis and Communis-AAAA, were chemically and biologically characterized. In respect to the chemical characterization, the following amino acid sequences and molecular masses were identified: Communis: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-COOH (1340.9Da) Communis-AAAA: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-Ala-Ala-Ala-Ala-Val-Xle-NH (1836.3Da). Furthermore, their biological effects were compared, accounting for the differences in structural characteristics between the two peptides. To this end, three biological assays were performed in order to evaluate the hyperalgesic, edematogenic and hemolytic effects of these molecules. Communis-AAAA, unlike Communis, showed a potent hemolytic activity with EC=142.6μM. Moreover, the highest dose of Communis-AAAA (2nmol/animal) induced hyperalgesia in mice. On the other hand, Communis (10nmol/animal) was able to induce edema but did not present hemolytic or hyperalgesic activity. Although both peptides have similarities in linear structures, we demonstrated the distinct biological effects of Communis and Communis-AAAA. This is the first study with Chartegellus communis venom, and both Communis and Communis-AAAA are unpublished peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.