Matrix-assisted laser desorption–ionization/time of flight mass spectrometry (MALDI-TOF MS) has been widely implemented for the rapid identification of microorganisms. Although most bacteria, yeasts and filamentous fungi can be accurately identified with this method, some closely related species still represent a challenge for MALDI-TOF MS. In this study, two MALDI-TOF-based approaches were applied for discrimination at the species-level of isolates belonging to the Cryptococcus neoformans complex, previously characterized by Amplified Fragment Length Polymorphism (AFLP) and sequencing of the ITS1-5.8S-ITS2 region: (i) an expanded database was built with 26 isolates from the main Cryptococcus species found in our setting (C. neoformans, C. deneoformans and AFLP3 interspecies hybrids) and (ii) peak analysis and data modeling were applied to the protein spectra of the analyzed Cryptococcus isolates. The implementation of the in-house database did not allow for the discrimination of the interspecies hybrids. However, the performance of peak analysis with the application of supervised classifiers (partial least squares-discriminant analysis and support vector machine) in a two-step analysis allowed for the 96.95% and 96.55% correct discrimination of C. neoformans from the interspecies hybrids, respectively. In addition, PCA analysis prior to support vector machine (SVM) provided 98.45% correct discrimination of the three analyzed species in a one-step analysis. This novel method is cost-efficient, rapid and user-friendly. The procedure can also be automatized for an optimized implementation in the laboratory routine.
Creatinine level in urine is a key factor to monitor kidney performance. The use of an alternative microfluidic platform based on cellulose substrates is an interesting option to integrate sample treatment, creatinine recognition by ionophore extraction chemistry and quantification by color measurement through consumer electronics imaging devices. The inclusion of ionophore extraction chemistry based on aryl-substituted calix[4]pyrrole synthetic receptor on 8.7 mm long cotton thread permit the sample treatment, optical recognition of creatinine and their quantification by smartphone running app in unfiltered urine samples diluted 1:100 ratio. The device shows a short response time, 30 s, to creatinine over a wide dynamic range (from 1.6×10-6 to 5×10-2 M) with reproducibility between 2.9-4.3%. The low interference level of representative species in urine is studied and justified by density functional theory (DFT) calculations.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Vancomycin-resistant Enterococcus faecium represents a health threat due to its ability to spread and cause outbreaks. MALDI-TOF MS has demonstrated its usefulness for E. faecium identification, but its implementation for antimicrobial resistance detection is still under evaluation. This study assesses the repeatability of MALDI-TOF MS for peak analysis and its performance in the discrimination of vancomycin-susceptible (VSE) from vancomycin-resistant isolates (VRE). The study was carried out on protein spectra from 178 E. faecium unique clinical isolates—92 VSE, 31 VanA VRE, 55 VanB VRE-, processed with Clover MS Data Analysis software. Technical and biological repeatability were assayed. Unsupervised (principal component analysis, (PCA)) and supervised algorithms (support vector machine (SVM), random forest (RF) and partial least squares–discriminant analysis (PLS-DA)) were applied. The repeatability assay was performed with 18 peaks common to VSE and VRE with intensities above 1.0% of the maximum peak intensity. It showed lower variability for normalized data and for the peaks within the 3000–9000 m/z range. It was found that 80.9%, 79.2% and 77.5% VSE vs. VRE discrimination was achieved by applying SVM, RF and PLS-DA, respectively. Correct internal differentiation of VanA from VanB VRE isolates was obtained by SVM in 86.6% cases. The implementation of MALDI-TOF MS and peak analysis could represent a rapid and effective tool for VRE screening. However, further improvements are needed to increase the accuracy of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.