Symbiotic nitrogen-fixing bacteria express a terminal oxidase with a high oxygen affinity, the cbb3-type oxidase encoded by the fixNOQP operon. Previously, we have shown that, in Rhizobium etli CFN42, the repeatedfixNOQP operons (fixNOQPd and fixNOQPf) have a differential role in nitrogen fixation. Only the fixNOQPd operon is required for the establishment of an effective symbiosis; microaerobic induction of this operon is under the control of at least three transcriptional regulators, FixKf, FnrNd, and FnrNchr, belonging to the Crp/Fnr family. In this work, we describe two novel Crp/Fnr-type transcriptional regulators (StoRd and StoRf, symbiotic terminal oxidase regulators) that play differential roles in the control of key genes for nitrogen fixation. Mutations either in stoRd or stoRf enhance the microaerobic expression of both fixNOQP reiterations, increasing also the synthesis of the cbb3-type oxidase in nodules. Despite their structural similarity, a differential role of these genes was also revealed, since a mutation in stoRd but not in stoRf enhanced both the expression of fixKf and the nitrogen-fixing capacity of R. etli CFN42.
The wastes generated by the shrimp industry are approximately between 50 and 60% of the catch volume. These residues such as head, viscera, and shell are potential pollutants if they are not treated for proper disposal. One way to solve this problem is to use the residues as functional food ingredients. In this regard, shrimp residues are rich in chitin, the second most abundant biopolymer on the planet after cellulose. Chitin is composed of N-acetyl glucosamine, a molecule used as a sweetener in the food industry and as an aid in the treatment of coronary diseases and gonarthrosis. N-acetyl glucosamine can be obtained by the hydrolysis of colloidal chitin using chemical or enzymatic methods; however, chemical methods are associated with pollution. In this study, we determined the hydrolysis conditions of shrimp colloidal chitin for obtaining N-acetyl glucosamine, using the extracellular enzymes produced by a marine bacterium isolated in the coastal zone of Progreso, Yucatan, Mexico. The best N-acetyl glucosamine yield obtained was 2.65%, using 10 mg/mL colloidal chitin, at 60°C, and pH 8.9 with 3.5% NaCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.