Interfaces of dye molecules and two-dimensional transition metal dichalcogenides (TMDCs) combine strong molecular dipole excitations with high carrier mobilities in semiconductors. Förster type energy transfer is one key mechanism for the coupling between both constituents. We report microscopic calculations of a spectrally resolved Förster induced transition rate from dye molecules to a TMDC layer. Our approach is based on microscopic Bloch equations which are solved selfconsistently together with Maxwells equations. This approach allows to incorporate the dielectric environment of a TMDC semiconductor, sandwiched between donor molecules and a substrate. Our analysis reveals transfer rates in the meV range for typical dye molecules in closely stacked structures, with a non-trivial dependence of the Förster rate on the molecular transition energy resulting from unique signatures of dark, momentum forbidden TMDC excitons.
Dispersion engineering is a powerful and versatile tool that can vary the speed of light signals and induce negative-mass effects in the dynamics of particles and quasiparticles. Here, we show that dissipative coupling between bound electron-hole pairs (excitons) and photons in an optical microcavity can lead to the formation of exciton polaritons with an inverted dispersion of the lower polariton branch and hence, a negative mass. We perform direct measurements of the anomalous dispersion in atomically thin (monolayer) WS2 crystals embedded in planar microcavities and demonstrate that the propagation direction of the negative-mass polaritons is opposite to their momentum. Our study introduces the concept of non-Hermitian dispersion engineering for exciton polaritons and opens a pathway for realising new phases of quantum matter in a solid state.
The interplay of the non-equivalent corners in the Brillouin zone of transition metal dichalcogenides have been investigated extensively. While experimental and theoretical works contributed to a detailed understanding of the relaxation of selective optical excitations and the related relaxation rates, only limited microscopic descriptions of stationary experiments are available so far. In this manuscript we present microscopic calculations for the non-equilibrium steady state properties of excitons during continuous wave pumping. We find sharp features in photoluminescence excitation spectra and degree of polarization which result from phonon assisted excitonic transitions dominating over exciton recombination and intervalley exchange coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.