Background Increasing digitalization in the medical domain gives rise to large amounts of health care data, which has the potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot unlock their full potential at scale, owing to nonstandardized data formats, lack of technical and semantic data interoperability, and limited cooperation between stakeholders in the health care system. Despite the existence of standardized data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability for AI remain limited. Objective In this paper, we developed a data harmonization pipeline (DHP) for clinical data sets relying on the common FHIR data standard. Methods We validated the performance and usability of our FHIR-DHP with data from the Medical Information Mart for Intensive Care IV database. Results We present the FHIR-DHP workflow in respect of the transformation of “raw” hospital records into a harmonized, AI-friendly data representation. The pipeline consists of the following 5 key preprocessing steps: querying of data from hospital database, FHIR mapping, syntactic validation, transfer of harmonized data into the patient-model database, and export of data in an AI-friendly format for further medical applications. A detailed example of FHIR-DHP execution was presented for clinical diagnoses records. Conclusions Our approach enables the scalable and needs-driven data modeling of large and heterogenous clinical data sets. The FHIR-DHP is a pivotal step toward increasing cooperation, interoperability, and quality of patient care in the clinical routine and for medical research.
BACKGROUND Increasing digitalisation in the medical domain gives rise to large amounts of healthcare data which has the potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot unlock their full potential at scale, owing to non-standardised data formats, lack of technical and semantic data interoperability, and limited cooperation between stakeholders in the healthcare system. Despite the existence of standardised data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability for AI remains limited. OBJECTIVE We developed a data harmonisation pipeline (DHP) for clinical data sets relying on the common FHIR data standard. METHODS We validated the performance and usability of our FHIR-DHP with data from the MIMIC IV database including > 40,000 patients admitted to an intensive care unit. RESULTS We present the FHIR-DHP workflow in respect of transformation of “raw” hospital records into a harmonised, AI-friendly data representation. The pipeline consists of five key preprocessing steps: querying of data from hospital database, FHIR mapping, syntactic validation, transfer of harmonised data into the patient-model database and export of data in an AI-friendly format for further medical applications. A detailed example of FHIR-DHP execution was presented for clinical diagnoses records. CONCLUSIONS Our approach enables scalable and needs-driven data modelling of large and heterogenous clinical data sets. The FHIR-DHP is a pivotal step towards increasing cooperation, interoperability and quality of patient care in the clinical routine and for medical research. CLINICALTRIAL Data interoperability, FHIR, data standardisation pipeline, MIMIC IV
Purpose: Increasing digitalisation in the medical domain gives rise to large amounts of healthcare data which has the potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot unlock their full potential at scale, owing to non-standardised data formats, lack of technical and semantic data interoperability, and limited cooperation between stakeholders in the healthcare system. Despite the existence of standardised data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability for AI remains limited. Methods: We developed a data harmonisation pipeline (DHP) for clinical data sets relying on the common FHIR data standard. We validated the performance and usability of our FHIR-DHP with data from the MIMIC IV database including > 40,000 patients admitted to an intensive care unit. Results: We present the FHIR-DHP workflow in respect of transformation of 'raw' hospital records into a harmonised, AI-friendly data representation. The pipeline consists of five key preprocessing steps: querying of data from hospital database, FHIR mapping, syntactic validation, transfer of harmonised data into the patient-model database and export of data in an AI-friendly format for further medical applications. A detailed example of FHIR-DHP execution was presented for clinical diagnoses records. Conclusion: Our approach enables scalable and needs-driven data modelling of large and heterogenous clinical data sets. The FHIR-DHP is a pivotal step towards increasing cooperation, interoperability and quality of patient care in the clinical routine and for medical research.
Purpose: Increasing digitalisation in the medical domain gives rise to large amounts of healthcare data which has the potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot unlock their full potential at scale, owing to non-standardised data formats, lack of technical and semantic data interoperability, and limited cooperation between stakeholders in the healthcare system. Despite the existence of standardised data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability for AI remains limited. Methods: We developed a data harmonisation pipeline (DHP) for clinical data sets relying on the common FHIR data standard. We validated the performance and usability of our FHIR-DHP with data from the MIMIC IV database including > 40,000 patients admitted to an intensive care unit. Results: We present the FHIR-DHP workflow in respect of transformation of “raw” hospital records into a harmonised, AI-friendly data representation. The pipeline consists of five key preprocessing steps: querying of data from hospital database, FHIR mapping, syntactic validation, transfer of harmonised data into the patient-model database and export of data in an AI-friendly format for further medical applications. A detailed example of FHIR-DHP execution was presented for clinical diagnoses records. Conclusion: Our approach enables scalable and needs-driven data modelling of large and heterogenous clinical data sets. The FHIR-DHP is a pivotal step towards increasing cooperation, interoperability and quality of patient care in the clinical routine and for medical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.