A new method was developed for producing highly porous NiTi for use as an implant material. The combination of the space‐holder technique with the metal injection molding process allows a net‐shape fabrication of geometrically complex samples and the possibility of mass production for porous NiTi. Further, the porosity can be easily adjusted with respect to pore size, pore shape, and total porosity. The influence of the surface properties of powder metallurgical NiTi on the biocompatibility was first examined using human mesenchymal stem cells (hMSCs). It was found that pre‐alloyed NiTi powders with an average particle size smaller than 45 μm led to the surface properties most suitable for the adhesion and proliferation of hMSCs. For the production of highly porous NiTi, different space‐holder materials were investigated regarding low C‐ and O‐impurity contents and the reproducibility of the process. NaCl was the most promising space‐holder material compared to PMMA and saccharose and was used in subsequent studies. In these studies, the influence of the total porosity on the mechanical properties of NiTi is investigated in detail. As a result, bone‐like mechanical properties were achieved by the choice of Ni‐rich NiTi powder and a space‐holder content of 50 vol% with a particle size fraction of 355–500 μm. Pseudoelasticity of up to 6% was achieved in compression tests at 37 °C as well as a bone‐like loading stiffness of 6.5 GPa, a sufficient plateau stress σ25 of 261 MPa and a value for σ50 of 415 MPa. The first biological tests of the porous NiTi samples produced by this method showed promising results regarding proliferation and ingrowth of mesenchymal stem cells, also in the pores of the implant material.
Highly porous NiTi alloys with pseudoelastic properties are attractive candidates for biomedical implants, energy absorbers, or damping elements. Recently, a new method was developed for net-shape manufacturing of such alloys combining metal injection molding with the application of suitable space-holder materials. A comprehensive study of mechanical properties was conducted on samples with a porosity of 51% and a pore size in the range of 300-500 lm. At low deformations <6%, fully pronounced pseudoelasticity was found. Even at higher strains, a shape recovery of maximum 6% took place, on which the onset of irreversible plastic deformation was superposed. Results of static compression tests were also used to calculate the energy-absorbing capacity. Fatigue of porous NiTi was investigated by cyclic loading up to 230,000 stress reversals. The failure mechanisms responsible for a reduction of shape recovery after an increased number of load cycles are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.