In the present study, we demonstrated the emergence of dalbavancin non-susceptible and teicoplanin-resistant Staphylococcus aureus small colony variants which were selected in vivo through long-term treatment with dalbavancin. A 36-year-old man presented with a cardiac device-related S. aureus endocarditis and received long-term therapy with dalbavancin. Consecutively, two glycopeptide/lipoglycopeptide susceptible and two non-susceptible S. aureus isolates were obtained from blood cultures and the explanted pacemaker wire. The isolates were characterized by: standard typing methods, antimicrobial susceptibility testing, auxotrophic profiling, proliferation assays, scanning and transmission electron microscopy, as well as whole genome sequencing. The isolated SCVs demonstrated a vancomycin-susceptible but dalbavancin non-susceptible and teicoplanin-resistant phenotype whereof the respective MICs of the last isolate were 16- and 84-fold higher than the susceptible strains. All four strains were indistinguishable or at least closely related by standard typing methods (spa, MLST, and PFGE), and whole genome sequencing revealed only eight sequence variants. A consecutive increase in cell wall thickness (up to 2.1-fold), an impaired cell separation with incomplete or multiple cross walls and significantly reduced growth rates were observed in the present study. Therefore, the mutations in pbp2 and the DHH domain of GdpP were identified as the most probable candidates due to their implication in the biosynthesis and metabolism of the staphylococcal cell wall. For the first time, we demonstrated in vivo induced dalbavancin non-susceptible/teicoplanin resistant, but vancomycin and daptomycin susceptible S. aureus SCVs without lipopeptide or glycopeptide pretreatment, thus, indicating the emergence of a novel lipoglycopeptide resistance mechanism.
Convalescent plasma is a suggested treatment for Coronavirus disease 2019 (Covid-19), but its efficacy is uncertain. We aimed to evaluate whether the use of convalescent plasma is associated with improved clinical outcomes in patients with Covid-19.In this systematic review and meta-analysis, we searched randomized controlled trials investigating the use of convalescent plasma in patients with Covid-19 in Medline, Embase, Web of Science, Cochrane Library, and medRxiv from inception to October 17th, 2021. Two reviewers independently extracted the data. The primary efficacy outcome was all-cause mortality. The Cochrane Risk of Bias Tool and GRADE (Grading of Recommendations Assessment, Development and Evaluation) method were used. This study was registered with PROSPERO, CRD42021284861. Of the 8874 studies identified in the initial search, sixteen trials comprising 16 317 patients with Covid-19 were included. In the overall population, the all-cause mortality was 23.8% (2025 of 8524) with convalescent plasma and 24.4% (1903 of 7769) with standard of care (risk ratio (RR) 0.97, 95% CI 0.90-1.04) (high-certainty evidence). All-cause mortality did not differ in the subgroups of noncritically ill (21.7% [1288 of 5929] vs. 22.4% [1320 of 5882]) and critically ill (36.9% [518 of 1404] vs. 36.4% [455 of 1247]) patients with Covid-19. The use of convalescent plasma in patients who tested negative for anti-SARS-CoV-2 antibodies at baseline was not associated with significantly improved survival (RR 0.94, 95% CI 0.87-1.02). In the overall study population, initiation of mechanical ventilation (RR 0.97, 95% CI 0.88-1.07), time to clinical improvement (HR 1.09, 95% CI 0.91-1.30), and time to discharge (HR 0.95, 95% CI 0.89-1.02) were similar between the two groups. In patients with Covid-19, treatment with convalescent plasma, as compared with control, was not associated with lower all-cause mortality or improved disease progression, irrespective of disease severity and baseline antibody status.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, identifier PROSPERO (CRD42021284861).
Objectives Pulmonary thrombus formation is a hallmark of coronavirus disease 2019 (COVID-19). A dysregulated immune response culminating in thromboinflammation has been described, but the pathomechanisms remain unclear. Methods We studied 41 adult COVID-19 patients with positive results on reverse-transcriptase polymerase-chain-reaction assays and 37 sex-and age-matched healthy controls. Number and surface characteristics of extracellular vesicles (EV) and citrullinated histone H 3 levels were determined in plasma upon inclusion by flowcytometry and immunoassay. Results 20 patients had severe and 21 non-severe disease. The number of EV [median, (25th, 75th percentile)] was significantly higher in patients compared with controls [658.8 (353.2, 876.6) vs 435.5 (332.5, 585.3), geometric mean ratio (95% confidence intervals): 2.6 (1.9, 3.6); p<0.001]. Patients exhibited significantly higher numbers of EV derived from platelets, endothelial cells, leukocytes, or neutrophils than controls. EV from alveolar-macrophages and alveolar-epithelial-cells were detectable in plasma and were significantly higher in patients. Intercellular Adhesion Molecule 1-positive EV levels were higher in patients, while no difference between tissue factor-positive and angiotensin converting enzyme-positive EV was seen between both groups. Levels of EV did not differ between patients with severe and non-severe COVID-19. Citrullinated histone H 3 levels [ng/ml, median (25th, 75th percentile)] were higher in patients than in controls [1.42 (0.6, 3.4) vs 0.31 (0.1, 0.6), geometric mean ratio: 4.44 (2.6, 7.7); p<0.001], and were significantly lower in patients with non-severe disease compared to those with severe disease. Conclusion EV and citrullinated histone H 3 are associated with COVID-19 and could provide information regarding pathophysiology of the disease.
Intraperitoneal administration of antibiotics is recommended for the treatment of peritoneal dialysis-related peritonitis. However, little data are available on a possible interference between peritoneal dialysis fluids and the activity of antimicrobial agents. Thus, the present in vitro study set out to investigate the influence of different peritoneal dialysis fluids on the antimicrobial activity of ampicillin, linezolid, and daptomycin against Enterococcus faecalis. Time-kill curves in four different peritoneal dialysis fluids were performed over 24 h with four different concentrations (1 × MIC, 4 × MIC, 8 × MIC, 30 × MIC) of each antibiotic evaluated. Cation-adjusted Mueller-Hinton broth was used as the comparator solution. All four peritoneal dialysis fluids evaluated had a bacteriostatic effect on the growth of Enterococcus faecalis. Compared to the cation-adjusted Mueller-Hinton broth comparator solution, the antimicrobial activity of all antibiotics tested was reduced. For ampicillin and linezolid, no activity was found in any peritoneal dialysis fluid, regardless of the concentration. Daptomycin demonstrated dose-dependent activity in all peritoneal dialysis fluids. Bactericidal activity was observed at the highest concentrations evaluated in Dianeal® PDG4 and Extraneal®, but not in concentrations lower than 30 × MIC and not in Nutrineal® PD4 and Physioneal® 40. The antimicrobial activity of ampicillin and linezolid is limited in peritoneal dialysis fluids in vitro. Daptomycin is highly effective in peritoneal dialysis fluids and might, thus, serve as an important treatment option in peritoneal dialysis-related peritonitis. Further studies are needed to evaluate the clinical impact of the present findings.
Intraperitoneal administration of antibiotics together with peritoneal dialysis fluids (PDFs) remains the preferable route for treatment of peritoneal dialysis-related peritonitis. For home based therapy, antibiotic-containing PDFs are stored for up to two weeks and warmed up to body-temperature before administration. The present study investigated the compatibility of ciprofloxacin with five commercial PDFs at refrigeration-temperature, room-temperature and body-temperature. Ciprofloxacin concentrations were determined using high-performance liquid chromatography. Drug-diluent stability was evaluated by measurement of pH-values and visual inspection at each sampling point. The antimicrobial activity of ciprofloxacin was assessed by an E. coli disk diffusion method. Ciprofloxacin was stable at refrigeration-temperature and body-temperature in all PDFs evaluated over the whole study period of 14 days and 24 hours, respectively. At room-temperature, in contrast, ciprofloxacin demonstrated only limited stability in particular when tested in mixed Physioneal. Except for Physioneal 1.36%, no relevant drug adsorption was observed and the antimicrobial activity of ciprofloxacin was found to be preserved in each PDF at each storage condition investigated. Intraperitoneal ciprofloxacin might be used for inpatient and home based therapy of peritoneal dialysis-related peritonitis and no compensatory dose adjustment is needed when stored for up to two weeks at refrigeration-temperature before use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.