Abstract-Executable Domain-Specific Modeling Languages (xDSMLs) are typically defined by metamodels that specify their abstract syntax, and model interpreters or compilers that define their execution semantics. To face the proliferation of xDSMLs in many domains, it is important to provide language engineering facilities for opportunistic reuse, extension, and customization of existing xDSMLs to ease the definition of new ones. Current approaches to language reuse either require to anticipate reuse, make use of advanced features that are not widely available in programming languages, or are not directly applicable to metamodel-based xDSMLs. In this paper, we propose a new language implementation pattern, named REVISITOR, that enables independent extensibility of the syntax and semantics of metamodel-based xDSMLs with incremental compilation and without anticipation. We seamlessly implement our approach alongside the compilation chain of the Eclipse Modeling Framework, thereby demonstrating that it is directly and broadly applicable in various modeling environments. We show how it can be employed to incrementally extend both the syntax and semantics of the fUML language without requiring anticipation or re-compilation of existing code, and with acceptable performance penalty compared to classical handmade visitors.
a b s t r a c t Domain-Specific Languages (DSLs) bridge the gap between the problem space, in which stakeholders work, and the solution space, i.e., the concrete artifacts defining the target system. They are usually small and intuitive languages whose concepts and expressiveness fit a particular domain. DSLs recently found their application in an increasingly broad range of domains, e.g., cyber-physical systems, computational sciences and high performance computing. Despite recent advances, the development of DSLs is error-prone and requires substantial engineering efforts. Techniques to reuse from one DSL to another and to support customization to meet new requirements are thus particularly welcomed. Over the last decade, the Software Language Engineering (SLE) community has proposed various reuse techniques. However, all these techniques remain disparate and complicate the development of real-world DSLs involving different reuse scenarios.In this paper, we introduce the Concern-Oriented Language Development (COLD) approach, a new language development model that promotes modularity and reusability of language concerns . A language concern is a reusable piece of language that consists of usual language artifacts (e.g., abstract syntax, concrete syntax, semantics) and exhibits three specific interfaces that support (1) variability management, (2) customization to a specific context, and (3) proper usage of the reused artifact. The approach is supported by a conceptual model which introduces the required concepts to implement COLD. We also present * Corresponding author. J.-M. Jézéquel et al. / Computer Languages, Systems & Structures 54 (2018) [139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155] concrete examples of some language concerns and the current state of their realization with metamodel-based and grammar-based language workbenches. We expect this work to provide insights into how to foster reuse in language specification and implementation, and how to support it in language workbenches.
Abstract-The architecture of classic productivity software are moving from a traditional desktop-based software to a client server architecture hosted in the Cloud. In this context, web browsers behave as application containers that allow users to access a variety of Cloud-based applications and services, such as IDEs, Word processors, Music Collection Managers, etc. As a result, a significant part of these software run in the browser and accesses remote services. A lesson learned from development framework used in distributed applications is the success of pluggable architecture pattern as a core architecture concept, i.e., a Software Architecture that promotes the use of Pluggable Module to dynamically plug. Following this trend, this paper discusses the main challenges to create a component-based platform supporting the development of dynamically adaptable single web page applications. This paper also presents an approach called KevoreeJS based on models@runtime to control browser as component platform which address some of these challenges. We validate this work by presenting the design of a dashboard for sensor based system and highlighting the capacity of KevoreeJS to dynamically choose the placement of code on the server or client side and how KevoreeJS can be used to dynamically install or remove running components.
The goal of modular language development is to enable the definition of new languages as assemblies of pre-existing ones. Recent approaches in this area are plentiful but usually suffer from two main problems: either they do not support modular language composition both at the specification and implementation levels, or they require advanced knowledge of specific paradigms which hampers wide adoption in the industry. In this paper, we introduce a non-intrusive approach to modular development of language concerns with well-defined interfaces that can be composed modularly at the specification and implementation levels. We present an implementation of our approach atop the Eclipse Modeling Framework, namely AlexÐan object-oriented metalanguage for semantics definition and language composition. We evaluate Alex in the development of a new DSL for IoT systems modeling resulting from the composition of three independently defined languages (UML activity diagrams, Lua, and the OMG Interface Description Language). We evaluate the effort required to implement and compose these languages using Alex with regards to similar approaches of the literature. CCS Concepts • Software and its engineering → Domain specific languages; Reusability;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.