This work presents a comprehensive optical characterization of Zn 1 _ x Mg x O thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The linewidth broadening of the absorption and emission spectra as well as the magnitude of the observed Stokes shift are found to significantly increase with the Mg content. This is shown to be related to both potential fluctuations induced by pure statistical alloy disorder and the presence of a tail of band states, the latter dominating for medium Mg contents. Finally, metal-semiconductor-metal photodiodes were fabricated showing a high sensitivity and a blue shift in the cut-off energy from 3.32 to 4.02 eV, i.e., down to 308 nm. The photodiodes present large UV/dark contrast ratios (10 -10 7 ), indicating the viability of SP as a growth technique to fabricate low cost (Zn, Mg)0-based UV photodetectors reaching short wavelengths.
a By using the spray pyrolysis methodology in its classical configuration we have grown self-assembled Mg x Zn 12x O quantum dots (size y4-6 nm) in the overall range of compositions 0 ¡ x ¡ 1 on c-sapphire, Si (100) and quartz substrates. Composition of the quantum dots was determined by means of transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy.
ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 °C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.
We report on the growth and microstructure analysis of high Cd content ZnCdO/ZnO multiple quantum wells (MQW) within a nanowire. Heterostructures consisting of ten wells with widths from 0.7 to 10 nm are demonstrated, and show photoluminescence emissions ranging from 3.03 to 1.97 eV. The wells with thicknesses ≦̸2 nm have high radiative efficiencies compared to the thickest ones, consistent with the presence of quantum confinement. However, a nanometric analysis of the Cd profile along the heterostructures shows the presence of Cd diffusion from the ZnCdO well to the ZnO barrier. This phenomenon modifies the band structure and the optical properties of the heterostructure, and is considered in order to correctly identify quantum effects in the ZnCdO/ZnO MQWs.
Detecting the UV part of the spectrum is fundamental for a wide range of applications where ZnMgO has the potential to play a central role. The shortest achievable wavelength is a function of the Mg content in the films, which in turn is dependent on the growth technique. Moreover, increasing Mg contents lead to an electrical compensation of the films, which directly affects the responsivity of the photodetectors. In addition, the metal-semiconductor interface and the presence of grain boundaries have a direct impact on the responsivity through different gain mechanisms. In this work, we review the development of ZnMgO UV Schottky photodiodes using molecular beam epitaxy and spray pyrolysis, and we analyze and compare the physical mechanisms underlying the photodetector behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.