We consider the problem of on-line value function estimation in reinforcement learning. We concentrate on the function approximator to use. To try to break the curse of dimensionality, we focus on non parametric function approximators. We propose to fit the use of kernels into the temporal difference algorithms by using regression via the LASSO. We introduce the equi-gradient descent algorithm (EGD) which is a direct adaptation of the one recently introduced in the LARS algorithm family for solving the LASSO. We advocate our choice of the EGD as a judicious algorithm for these tasks. We present the EGD algorithm in details as well as some experimental results. We insist on the qualities of the EGD for reinforcement learning.
Constraint Programming (CP) solvers classically explore the solution space using tree-search based heuristics. Monte-Carlo Tree Search (MCTS), aimed at optimal sequential decision making under uncertainty, gradually grows a search tree to explore the most promising regions according to a specified reward function. At the crossroad of CP and MCTS, this paper presents the Bandit Search for Constraint Programming (BaSCoP) algorithm, adapting MCTS to the specifics of the CP search. This contribution relies on i) a generic reward function suited to CP and compatible with a multiple restart strategy; ii) the use of depthfirst search as roll-out procedure in MCTS. BaSCoP, on the top of the Gecode constraint solver, is shown to significantly improve on depth-first search on some CP benchmark suites, demonstrating its relevance as a generic yet robust CP search method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.