Consider n nodes connected to a single coordinator. Each node receives an individual online data stream of numbers and, at any point in time, the coordinator has to know the k nodes currently observing the largest values, for a given k between 1 and n. We design and analyze an algorithm that solves this problem while bounding the amount of messages exchanged between the nodes and the coordinator. Our algorithm employs the idea of using filters which, intuitively speaking, leads to few messages to be sent, if the new input is "similar" to the previous ones. The algorithm uses a number of messages that is on expectation by a factor of O ((log ∆ + k) · log n) larger than that of an offline algorithm that sets filters in an optimal way, where ∆ is upper bounded by the largest value observed by any node.
Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in n, m and k and computes a solution with an approximation factor that can be made arbitrarily close to 3 /2.
Consider the continuous distributed monitoring model in which n distributed nodes, receiving individual data streams, are connected to a designated server. The server is asked to continuously monitor a function defined over the values observed across all streams while minimizing the communication. We study a variant in which the server is equipped with a broadcast channel and is supposed to keep track of an approximation of the set of nodes currently observing the k largest values. Such an approximate set is exact except for some imprecision in an ε-neighborhood of the k-th largest value. This approximation of the Top-k-Position Monitoring Problem is of interest in cases where marginal changes (e.g. due to noise) in observed values can be ignored so that monitoring an approximation is sufficient and can reduce communication.This paper extends our results from [6], where we have developed a filter-based online algorithm for the (exact) Top-k-Position Monitoring Problem. There we have presented a competitive analysis of our algorithm against an offline adversary that also is restricted to filter-based algorithms. Our new algorithms as well as their analyses use new methods. We analyze their competitiveness against adversaries that use both exact and approximate filter-based algorithms, and observe severe differences between the respective powers of these adversaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.