Computer aided diagnosis systems based on brain imaging are an important tool to assist in the diagnosis of Parkinson's disease, whose ultimate goal is the detection by automatic recognizing of patterns that characterize the disease. In recent times Convolutional Neural Networks (CNN) have proved to be amazingly useful for that task. The drawback, however, is that 3D brain images contain a huge amount of information that leads to complex CNN architectures. When these architectures become too complex, classification performances often degrades because the limitations of the training algorithm and overfitting. Thus, this paper proposes the use of isosurfaces as a way to reduce such amount of data while keeping the most relevant information. These isosurfaces are then used to implement a classification system which uses two of the most well-known CNN architectures, LeNet and AlexNet, to classify DaTScan images with an average accuracy of 95.1% and AUC = 97%, obtaining comparable (slightly better) values to those obtained for most of the recently proposed systems. It can be concluded therefore that the computation of isosurfaces reduces the complexity of the inputs significantly, resulting in high classification accuracies with reduced computational burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.